(P+1) (p+3) (P+5) (p+7) +15: factorisation of middle terms
Answers
Answered by
9
(p+1)(p+3)(p+5)(p+7) + 15
= [(p+1)(p+7)][(p+3)(p+5) ]+ 15
= (p²+8p+7)(p²+8p+15)+15
Let p²+8p+7 = a ---(1)
= a(a+8)+15
= a²+8a+15
/* splitting the middle term we get */
= a² + 5a + 3a + 15
= a(a+5) + 3(a+5)
= (a+5)(a+3)
= (p²+8p+7+5)(p²+8p+7+3)
= (p²+8p+12)(p²+8p+10)
= ( p² + 6p + 2p + 12)(p²+8p+10)
= [p(p+6)+2(p+6)](p²+8p+10)
= (p+6)(p+2)(p²+8p+10)
•••♪
Similar questions