Math, asked by boharaj818, 3 months ago

p+1/p=4 ,prove that p³+1/p³=52​

Answers

Answered by Anonymous
1

Answer:

Proof is given below.

Step-by-step explanation:

Given that

p+\frac{1}{p} =4

Cubing on both sides,

(p+\frac{1}{p})^{3}=64

p^{3} +\frac1{p^3} +3(p)(\frac{1}{p})(p+\frac{1}{p}  ) = 64

But, we know that p × \frac{1}{p} = 1 and p+\frac{1}{p} =4. So this gives us

p^3+ \frac{1}{p^3} + 3(1)(4) = 64

p^3+ \frac{1}{p^3} + 12 = 64

p^3+\frac{1}{p^3} = 52

Hence proved.

Answered by PharohX
6

Answer:

GIVEN :-

 \sf \: p +  \frac{1}{p}  = 4 \\

TO PROVE :-

 \sf \: p^{3}  +  \frac{1}{p^{3} }  = 52\\

PROVING :-

 \sf \: It \:  \:  is  \:  \: given \:  \:  that

 \sf \: p +  \frac{1}{p}  = 4 \\

 \sf \: Taking  \:  \: cube  \:  \: on \:  \:   \:  \: both \:  \:  sides

 \implies \sf  \bigg( p +  \frac{1}{p}  \bigg)^{3} =  {4}^{3}  \\

 \sf \: Formula \:  -

  \orange{\sf \: (x + y) {}^{3}  =  {x}^{3}  +  {y}^{3}  + 3xy(x + y)}

 \sf \: By  \:  \: using  \:  \: the  \:  \: formula \:  \:  we \:  \:  get -

 \implies \sf  {p }^{3}  +  \frac{1}{ {p}^{3} } + 3(p).\frac{1}{(p)}   \bigg(p +  \frac{1}{p}   \bigg)  = 64\\

 \implies \sf  {p }^{3}  +  \frac{1}{ {p}^{3} } + 3 \bigg(p +  \frac{1}{p}   \bigg)  = 64\\

 \sf  \: Putting  \:  \: the  \: value  \: of  \: ( p +  \frac{1}{p} ) = 4 \\

 \implies \sf  {p }^{3}  +  \frac{1}{ {p}^{3} } + 3 \times 4 = 64\\

 \implies \sf  {p }^{3}  +  \frac{1}{ {p}^{3} } + 12= 64\\

 \implies \sf  {p }^{3}  +  \frac{1}{ {p}^{3} } = 64 - 12\\

 \implies \sf  {p }^{3}  +  \frac{1}{ {p}^{3} } = 52\\

 \large \sf \green{ \:Proved}

Similar questions