Math, asked by Rounak1288, 9 months ago

{(p+1/q)^p-q * (p-1/q)p+q}/(q+1/p)^p-q*(q-1/p)^p+q If,you doesn't understand the question then look at this image below. ↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓

Attachments:

Answers

Answered by mysticd
20

 Given \: \frac{ \Big(p+\frac{1}{q}\Big)^{p-q} \times \Big(p-\frac{1}{q}\Big)^{p+q} }{\Big(q+\frac{1}{p}\Big)^{p-q} \times \Big(q-\frac{1}{p}\Big)^{p+q}}

 = \frac{ \Big(\frac{pq+1}{q}\Big)^{p-q} \times \Big(\frac{pq-1}{q}\Big)^{p+q} }{\Big(\frac{pq+1}{p}\Big)^{p-q} \times \Big(\frac{pq-1}{p}\Big)^{p+q}}

 = \Big(\frac{pq+1}{q}\Big)^{p-q} \times \Big(\frac{pq-1}{q}\Big)^{p+q} \times \Big(\frac{p}{pq+1}\Big)^{p-q} \times \Big(\frac{p}{pq-1}\Big)^{p+q}

 = \frac{\cancel {(pq+1)^{(p-q)}}}{q^{(p-q)} }\times \frac{\cancel {(pq-1)^{(p+q)}}}{q^{(p+q)} }\times \frac{p^{(p-q)}}{\cancel {(pq+1)^{(p-q)}}} \times \frac{p^{(p+q)}}{\cancel {(pq-1)^{(p+q)}} }

 = \frac{ p^{p-q} \times p^{p+q}}{ q^{p-q} \times q^{p+q}}

 = \frac{p^{p-q+p+q}}{q^{p-q+p+q}}

 = \frac{p^{2p}}{q^{2p}}

 = \Big( \frac{p}{q}\Big)^{2p}

Therefore.,

 \red{\frac{ \Big(p+\frac{1}{q}\Big)^{p-q} \times \Big(p-\frac{1}{q}\Big)^{p+q} }{\Big(q+\frac{1}{p}\Big)^{p-q} \times \Big(q-\frac{1}{p}\Big)^{p+q}}}

 \green { = \Big( \frac{p}{q}\Big)^{2p} }

•••♪

Answered by ItzurBeBe
6

Answer:

see buddy...·´¯`(>▂<)´¯`·..·´¯`(>▂<)´¯`·..·´¯`(>▂<)´¯`·.

because of my brother

Attachments:
Similar questions