Math, asked by simran23262346, 7 months ago

(p+1) x2-3(p-1) x-(p-1)​

Answers

Answered by abirapal269
1

Answer:

Given quadratic equation is= (p + 1)x² - 6(p + 1) x + 3 (p + 9) = 0.

On comparing with standard form of quadratic equation i.e ax² + bx + c =0, a≠ 0

Here, a = p+1 , b= -6(p+1) , c= 3(p+9)

D(discriminant)= b²-4ac

=-6 (p+1)² - 4× (p+1)× 3(p+9)

= 36(p+1)² - 12(p+1)(p+9)

= 36(p² + 1 + 2p) - 12 (p²+9p+p+9)

= 36p² + 36 + 72p - 12p²- 108p-12p- 108

= 36p²-12p² +72p - 108p-12p +36- 108

= 24p² - 48p - 72

= 24(p² - 2p - 3)

Since, roots of given equation are equal. D= 0

0 = 24(p² - 2p - 3)

(p² - 2p - 3)= 0

p² - 3p +p - 3 = 0

p(p -3) +1(p-3)= 0

(p + 1) (p +3)= 0

(p + 1) (p +3)= 0

p ≠ 0 or p = 3

Hence, required value of p is 3

Put the value of p = 3 in given equation

(p + 1)x² - 6(p + 1) x + 3 (p + 9) = 0.

(3+1)x² -6(3+1)x + 3(3+9)= 0

4x² -24x +36= 0

4(x² -6x +9)=0

x² -6x +9 = 0

x² -3x -3x +9= 0

x(x -3) -3(x -3)= 0

(x-3)(x-3)= 0

(x-3)= 0 or (x-3)= 0

x = 3 or x= 3

Hence , the roots are x =3, 3.

Step-by-step explanation:

hope this help you.....

Answered by snipersudar
0

Answer:

6p^3-6p^2-6p+6

Step-by-step explanation:

(p+1) x2 -3(p-1) x-(p-1)​

=(2p+2)x(-3p+3)(-p+1)

=(2p+2)x(3p^2-6p+3)

=(6p^3-12p^2+6p)+(6p^2-12p+6)

=6p^3-6p^2-6p+6

Similar questions