Math, asked by UKSTUDIOUS3298, 1 month ago

P=1200 T=2 R=20 find the compound internet

Answers

Answered by MasterDhruva
20

Solution :-

First, we should find the amount that will obtain with these values. We have a formula for finding that,

Amount :-

 \sf \leadsto Amount = Principle \bigg( 1 + \dfrac{Rate}{100} \bigg)^{Time}

 \sf \leadsto 1200 \bigg( 1 + \dfrac{20}{100} \bigg)^{2}

 \sf \leadsto 1200 \bigg( 1 + \dfrac{1}{5} \bigg)^{2}

 \sf \leadsto 1200 \bigg( \dfrac{5 + 1}{5} \bigg)^{2}

 \sf \leadsto 1200 \bigg( \dfrac{6}{5} \bigg)^{2}

 \sf \leadsto 1200 \bigg( \dfrac{6^2}{5^2} \bigg)

 \sf \leadsto 1200 \bigg( \dfrac{36}{25} \bigg)

 \sf \leadsto \dfrac{1200 \times 36}{25} = \dfrac{443200}{25}

 \sf \leadsto \cancel \dfrac{443200}{25} = 1728

Now, we can find the compound interest.

Compound interest :-

 \sf \leadsto CI = Amount - Principle

 \sf \leadsto 1728 - 1200

 \sf \leadsto Rs.528

Therefore, the compound interest is ₹528.

Answered by ⱮøøɳƇⲅυѕɦεⲅ
26

Given :

Principal (P) = 1200

Time (T) = 2 years

Rate (R) = 20%

What To Find :

We have to find C.I.

  • C.I. = Compound Interest

Formula Using :

 \large\begin{gathered} {\underline{\boxed{ \rm {\red{A  \: =  \: P \:\bigg( \: 1 \:  +  \:  \frac{r}{100} \bigg)^{t}  }}}}}\end{gathered}

 \large\begin{gathered} {\underline{\boxed{ \rm {\blue{C.I = A - P}}}}}\end{gathered}

Where ,

  • A denotes Amount
  • P denotes Principal
  • R denotes Rate of interest
  • t denotes time (in years).
  • C.I. denotes Compound Interest

Basic Terms :

  • Simple Interest = Simple interest is the method of calculating interest charged on the amount invested in a fixed deposit.

  • Principle = The principal is the amount due on any debt before interest, or the amount invested before returns.

  • Rate = An interest rate is the percentage of principal charged by the lender for the use of its money.

  • Time = Time is duration (in months or years) in Simple Interest.

Solution :

For finding compound Interest first we need to find amount , after then we find compound Interest .

Here ,

\bf\green{ \longmapsto} \rm \:Principal \:  =  \: 1200

\bf\green{ \longmapsto} \rm \:Rate \:  of \:  interest \:  =  \: 20 \: \%

\bf\green{ \longmapsto} \rm \:Time \: =  \: 2 \: years

 \red \maltese \: \large{\textrm{{{\color{navy}{Calculating the Compound Interest}}}}}

\large\bf\purple{ \longrightarrow} \rm \:A \:  =  \: P \:  \bigg( \: 1 \:  +  \:  \frac{r}{100}  \bigg) ^{t}

\large\bf\purple{ \longrightarrow} \rm \:A \:  =  \: 1200 \:  \bigg( \: 1 \:  +  \:  \frac{20}{100}  \bigg) ^{2}

\large\bf\purple{ \longrightarrow} \rm \:A \:  =  \: 1200 \:  \bigg( \: 1 \:  +  \:   \frac{ \cancel{20}}{ \cancel{100}}  \bigg) ^{2}

\large\bf\purple{ \longrightarrow} \rm \:A \:  =  \: 1200 \:  \bigg( \: 1 \:  +  \:   \frac{ {1}}{{5}}  \bigg) ^{2}

\large\bf\purple{ \longrightarrow} \rm \:A \:  =  \: 1200 \:  \bigg(  \frac{5 \:  +  \: 1}{5}  \bigg) ^{2}

\large\bf\purple{ \longrightarrow} \rm \:A \:  =  \: 1200 \:  \bigg(   \frac{6}{5}\bigg) ^{2}

\large\bf\purple{ \longrightarrow} \rm \:A \:  =  \: 1200 \:   \times  \:  \frac{6}{5}  \:  \times  \:  \frac{6}{5}  \\

\large\bf\purple{ \longrightarrow} \rm \:A \:  =  \: \cancel {1200} \:   \: ^{240}  \:   \times  \:  \frac{6}{5}  \:  \times  \:  \frac{6}{ \cancel5}

\large\bf\purple{ \longrightarrow} \rm \:A \:  =  \:  \cancel{240} \: \:   ^{48}  \:   \times  \:  \frac{6}{ \cancel5}  \:  \times  \: {6} \\

\large\bf\purple{ \longrightarrow} \rm \:A \:  =  \: 48 \:  \times  \: 6 \: \times  \: 6

\large\bf\purple{ \longrightarrow} \rm \:A \:  =  1728

\Large\underbrace{\mathcal {{{\color{orange}{ \: Amount = 1728 \: }}}}}

 \large \blue\dag \: \underline {\rm {{{\color{green}{For  \: ,  \: Finding  \: C.I.}}}}} \:   \blue \dag

\large\bf\purple{ \hookrightarrow} \rm \:C.I = Amount  \: - \:  Principal

\large\bf\purple{ \hookrightarrow} \rm \:C.I = \: 1728 \:  -  \: 1200

\large\bf\purple{ \hookrightarrow} \rm \:C.I = \: ₹ \: 528

\Large\underbrace{\mathcal {{{\color{blue}{ \: Compound \:  Interest \: =  \: ₹ \: 528 }}}}}

Similar questions