Math, asked by ayush39216, 7 months ago

p=12000,r=10% t=3 yrs.c.i.=???​

Answers

Answered by itsAngelgirl
7

Answer:

{\huge{\pink{\underline{\underline{QuEsTiOn}}}}}

Kala invested Rs. 12,000 in a business. She will be paid an interest at 10 % per annum compounded annually. Find the Amount and C I credited against her name after 3 years.

{\huge{\pink{\underline{\underline{Given}}}}}

Principal(p)=Rs.12000

Rate(r)=10%per annum

Time(n)=3 years

{\huge{\pink{\underline{\underline{To\ find}}}}}

Amount=????

C.I.=?????

{\huge{\pink{\underline{\underline{Formula\ used}}}}}

Amount=p \times  {(1 +  \frac{r}{100} )}^{n} \\</p><p>Compound\ interest(C.I.)\\</p><p>=Amount -Principal

{\huge{\pink{\underline{\underline{SoLuTiOn}}}}}

Amount=12000×{(1 +  \frac{10}{100} )}^{3}\\</p><p>=&gt;12000×{(\frac{110}{100} )}^{3}\\</p><p>=&gt;12000×{(\frac{11}{10} )}^{3}\\</p><p>=&gt;12000× \frac{11}{10}  \times  \frac{11}{10}  \times  \frac{11}{10} \\</p><p>=&gt;12×11×11×11\\</p><p>=&gt;Rs.15,972

C.I.=Amount-Principal

=15,972-12000

=Rs.3,972

{\huge{\pink{\underline{\underline{Answer}}}}}

Amount after 3 yrs.=Rs.15,972

C.I. after 3 yrs =Rs.3,972

Answered by Anonymous
2

Given :

p(principal) = 12,000

r(rate) = 10%

t(time) = 3 years.

To find :

  • The compound interest after substituting the given values.

Solution :

  • We will take out the amount using the formula and then C. I.

Procedure :

We know that :

 { \underline{ \boxed{ \blue{ \sf{A(amount) =  p(1 +  \frac{r}{100}  {)}^{n}  }}}}}

Substituting the given values :

\longrightarrow \sf{a =  12000(1 +  \frac{1 \cancel 0}{10 \cancel 0}  {)}^{3} } \\  \sf \longrightarrow a = 12000(1 +  { \frac{1}{10} )}^{3} \\  \sf \longrightarrow a = 12\cancel{000} \times  \frac{11}{1\cancel0}  \times  \frac{11}{1 \cancel0}  \times  \frac{11}{1\cancel0}  \\  \sf \longrightarrow a =12 \times 1331\\ { \underline { \boxed{\sf { \green{\therefore a =15972}}}}}

We get amount :

A = 15,972

Required answer :

➠ C. I. = Amount - principal

C. I. = 15,972 - 12,000

C. I. = 3,972 ans.

Similar questions