Math, asked by ishan395, 7 months ago

P(2,3),Q(7,-2) and R(-2,-1) are the vertices of triangle PQR. Write down the equation of the median of triangle through R​

Answers

Answered by MaheswariS
1

\underline{\textbf{Given:}}

\textsf{Vertices of triangle PQR are}

\textsf{P(2,3), Q(7,-2), R(-2,-1)}

\underline{\textbf{To find:}}

\textsf{Median of triangle through R}

\underline{\textbf{Solution:}}

\textsf{Mid point of P and Q}

\mathsf{\left(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2}\right)}

\mathsf{\left(\dfrac{2+7}{2},\dfrac{3-2}{2}\right)}

\mathsf{\left(\dfrac{9}{2},\dfrac{1}{2}\right)}

\textbf{Equation of median through R}

\textsf{=Equation of line joining Mid point of PQ and R}

\implies\mathsf{\dfrac{y-y_1}{y_2-y_1}=\dfrac{x-x_1}{x_2-x_1}}

\implies\mathsf{\dfrac{y-\dfrac{1}{2}}{-1-\dfrac{1}{2}}=\dfrac{x-\dfrac{9}{2}}{-2-\dfrac{9}{2}}}

\implies\mathsf{\dfrac{\dfrac{2y-1}{2}}{\dfrac{-3}{2}}=\dfrac{\dfrac{2x-9}{2}}{\dfrac{-13}{2}}}

\implies\mathsf{\dfrac{2y-1}{-3}=\dfrac{2x-9}{-13}}

\implies\mathsf{-13(2y-1)=-3(2x-9)}

\implies\mathsf{-26y+13=-6x+27}

\implies\mathsf{6x-26y+13-27=0}

\implies\mathsf{6x-26y-14=0}

\implies\boxed{\mathsf{3x-13y-7=0}}

\underline{\textbf{Formula used:}}

\boxed{\begin{minipage}{7cm}$\\\mathsf{Equation\;of\;line\;joining\;(x_1,y_1)\;and\;(x_2,y_2)\;is}\\\\\mathsf{\dfrac{y-y_1}{y_2-y_1}=\dfrac{x-x_1}{x_2-x_1}}\\$\end{minipage}}

Similar questions