Math, asked by nav9668, 1 month ago

p=2+root3 find p+1/p and p^2+1/p^2

Answers

Answered by yashvardhan371
2

Answer:

here is yur answer bro or sis

Attachments:
Answered by MathCracker
11

Question :-

\rm{p = 2 +  \sqrt{3} } find \rm{p +  \frac{1}{p} } \\ and \rm{p {}^{2} +  \frac{1}{p {}^{2} }  } \\ .

Answer :-

⏩ \:  \rm{p +  \frac{1}{p} = 4 } \\

⏩ \:  \rm{p {}^{2} +  \frac{1}{p {}^{2} } =  14 } \\

Step by step explanation :-

Given that,

  \rm\implies{p   = 2 +  \sqrt{3} }

Now,

\rm:\longmapsto \red{p = 2 +  \sqrt{3} } \:  \:  \:   \\  \\ \rm:\longmapsto{ \frac{1}{p}  =  \frac{1}{2 +  \sqrt{3} } }

On Rationalizing the denominator we get,

\rm:\longmapsto{ \frac{1}{p} =  \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  } \\  \\ \rm:\longmapsto{ \frac{1}{p} =  \frac{2 -  \sqrt{3} }{(2 +  \sqrt{3)} (2 -  \sqrt{3}) }  }

In denominator using (a+b) (a-b) = a² - b², On using this identity we get,

\rm:\longmapsto{ \frac{1}{p}  =  \frac{2 -  \sqrt{3} }{(2) {}^{2} - ( \sqrt{3} ) {}^{2}  } } \\  \\ \rm:\longmapsto{ \frac{1}{p}  =  \frac{2 -  \sqrt{3} }{1} } \:  \:  \:  \:  \:  \:  \:  \:  \:

Hence,

 \rm:\longmapsto \red{ \frac{1}{p} = 2 -  \sqrt{3}  } \\

We have to find,

\rm:\longmapsto{p +  \frac{1}{p} } \\

On substituting all values we get,

\rm:\longmapsto{p +  \frac{1}{p}  = 2 +  \cancel{ \sqrt{3}  }+ 2 - \cancel{  \sqrt{3} }} \\  \\ \rm:\longmapsto{p +  \frac{1}{p}  = 2 + 2} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \rm:\longmapsto \red{p +  \frac{1}{p} = 4 } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

In 2nd question we have to find,

\rm:\longmapsto{p {}^{2} +  \frac{1}{p {}^{2} }  } \\

On substituting all values we get,

\rm:\longmapsto{p {}^{2} +  \frac{1}{p {}^{2} } = (2 +  \sqrt{3} ) {}^{2}  + (2 -  \sqrt{3}   ) {}^{2} } \\

We using,

  • (a+b)² = a² + 2ab + b²
  • (a-b)² = a² - 2ab + b²

On using this identity we get,

 \small\rm:\longmapsto{p {}^{2}  +  \frac{1}{p {}^{2} } = \{ (2) {}^{2}  + 2(2)( \sqrt{3}  ) + ( \sqrt{3}) {}^{2} \} +  \{(2) {}^{2}  - 2(2)( \sqrt{3}) + ( \sqrt{3}  ) {}^{2}   } \\  \\  \small\rm:\longmapsto{p {}^{2} +  \frac{1}{p {}^{2} } = 4 \:   \:  \cancel{+  4 \sqrt{3} } + 3 + 4  \:  \:  \cancel{- 4 \sqrt{3}   }+ 3 } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \small\rm:\longmapsto{p {}^{2} +  \frac{1}{p {}^{2} }  = 4 + 3 + 4 + 3 } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \small\rm:\longmapsto \red{p {}^{2}  +  \frac{1}{p {}^{2} }  = 14} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Learn more from brainly :

1. if p=2-root3 then find p square -1÷p square.

https://brainly.in/question/8696265

2. P+1/p=root3 then p⁴²+p³⁶+p³⁰+p²⁴

https://brainly.in/question/33934288

Similar questions