p^2q^2-6pqr+9r^2( Factorise)
Answers
Answered by
29
We need to know algebraic identity first.
(a - b)² = a² - 2ab + b²
Solution :
Now, p²q² - 6pqr + 9r²
= (pq)² - (2 * pq * 3r) + (3r)²
= (pq - 3r)²
= (pq - 3r) (pq - 3r),
which is the required factorization.
#MarkAsBrainliest
Anonymous:
Nice answer ^_^
Answered by
31
Answer :-
____________________________
To factorise of : p²q² - 6pqr + 9r²
Salutation :-
p²q² - 6pqr + 9r²
= ( pq )² - 2 × pq × 3r + ( 3r )²
= ( pq - 3r )²
= ( pq - 3r ) ( pq - 3r ) [ ★ Required answer ]
_________________________________
Verification :-
( pq - 3r ) ( pq - 3r )
= pq ( pq - 3r ) - 3r ( pq - 3r )
= p²q² - 3pqr - 3pqr + 9r²
= p²q² - 6pqr + 9r² [ ★ Proved ]
_________________________________
Used identity :-
( a - b )² = a² - 2ab + b²
_________________________________
____________________________
To factorise of : p²q² - 6pqr + 9r²
Salutation :-
p²q² - 6pqr + 9r²
= ( pq )² - 2 × pq × 3r + ( 3r )²
= ( pq - 3r )²
= ( pq - 3r ) ( pq - 3r ) [ ★ Required answer ]
_________________________________
Verification :-
( pq - 3r ) ( pq - 3r )
= pq ( pq - 3r ) - 3r ( pq - 3r )
= p²q² - 3pqr - 3pqr + 9r²
= p²q² - 6pqr + 9r² [ ★ Proved ]
_________________________________
Used identity :-
( a - b )² = a² - 2ab + b²
_________________________________
Similar questions