Math, asked by Garinaa4350, 1 month ago

p + 2q = −9 and 3p + 4q + 17 = 0 solve by Cross-Multiplication Method

Answers

Answered by aestheticgirl28
0

✨Hope it helps ,here is your answer✨

✨Pls mark as brainliest✨

Step-by-step explanation:

<mn>2</mn>

<mrow>

<mo>(</mo>

>thx

Answered by mathdude500
18

\large\underline{\sf{Solution-}}

Given pair of equations are

\rm :\longmapsto\:p + 2q =  - 9

and

\rm :\longmapsto\:3p + 4q + 17 = 0

can be rewritten as

\rm :\longmapsto\:3p + 4q  =  -  17

Now, we have two equations as

 \red{\rm :\longmapsto\:p + 2q =  - 9}

and

 \red{\rm :\longmapsto\:3p + 4q  =  -  17}

Now, using Cross multiplication method, we have

\begin{gathered}\boxed{\begin{array}{c|c|c|c} \bf 2 &amp; \bf 3 &amp; \bf 1&amp; \bf 2\\ \frac{\qquad}{} &amp; \frac{\qquad}{}\frac{\qquad}{} &amp;\frac{\qquad}{} &amp; \frac{\qquad}{} &amp;\\ \sf 2 &amp; \sf  - 9 &amp; \sf 1 &amp; \sf 2\\ \\ \sf 4 &amp; \sf  - 17 &amp; \sf 3 &amp; \sf 4\\ \end{array}} \\ \end{gathered}

Now,

\rm :\longmapsto\:\dfrac{p}{ - 34 - ( - 36)}  = \dfrac{q}{ - 27 - ( - 17)}  = \dfrac{ - 1}{4 - 6}

\rm :\longmapsto\:\dfrac{p}{ - 34 +  36}  = \dfrac{q}{ - 27 + 17}  = \dfrac{ - 1}{ - 2}

\rm :\longmapsto\:\dfrac{p}{2}  = \dfrac{q}{ - 10}  = \dfrac{ 1}{ 2}

On Comparing first and third member, we get

\rm :\longmapsto\:\dfrac{p}{2}   = \dfrac{ 1}{ 2}

\bf\implies \:p = 1

Now, Comparing second and third member, we get

\rm :\longmapsto\: \dfrac{q}{ - 10}  = \dfrac{ 1}{ 2}

\bf\implies \:q =  - 5

VERIFICATION :-

Consider first equation,

\rm :\longmapsto\:p + 2q =  - 9

On substituting the values of p and q, we get

\rm :\longmapsto\:1 + 2( - 5) =  - 9

\rm :\longmapsto\:1  - 10 =  - 9

\rm :\longmapsto\:  - 9 =  - 9

Hence, Verified

Consider second equation,

\rm :\longmapsto\:3p + 4q  =  -  17

On substituting the values of p and q, we get

\rm :\longmapsto\:3(1) + 4( - 5)  =  -  17

\rm :\longmapsto\:3 - 20  =  -  17

\rm :\longmapsto\: - 17  =  -  17

Hence, Verified

Similar questions