p=3+2√2 হলে দেখাও যে p√p+(1÷p√p)=10√2
Answers
Given :
p = 3 + 2√2
To show :
( p√p) - (1/p√p) = 10√2 .
Solution :
p = 3 + 2√2
=> p = [ 2 + 1 + 2√2]
=> p = [ {√2}² + {1}² + 2{√2}{1} ]
=> p = [ √2 + 1]²
=> √p = √[ √2 + 1]²
=> √p = | √2 + 1 |
Let us now find the value of p√p.
p√p :
=> ( 3 + 2√2 )( 1 + √2 )
=> 3 + 3√2 + 2√2 + 4
=> 7 + 5√2
Let us now find the value of 1/p√p.
1/p√p is simply the conjugate of p√p
Here, the signs are only reversed .
So , 1/p√p becomes -
=> 7 - 5√2
Required value :
( 7 + 5√2 ) - ( 7 - 5√2 )
=> 7 + 5√2 - 7 + 5√2
=> 10√2 .
This is the answer .
______________________________
Additional Information :
(a + b)² = a² + 2ab + b²
(a + b)² = (a - b)² + 4ab
(a - b)² = a² - 2ab + b²
(a - b)² = (a + b)² - 4ab
a² + b² = (a + b)² - 2ab
a² + b² = (a - b)² + 2ab
2 (a² + b²) = (a + b)² + (a - b)²
4ab = (a + b)² - (a - b)²
ab = {(a + b)/2}² - {(a-b)/2}²
(a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
(a + b)³ = a³ + 3a²b + 3ab² b³
(a + b)³ = a³ + b³ + 3ab(a + b)
(a - b)³ = a³ - 3a²b + 3ab² - b³
a³ + b³ = (a + b)( a² - ab + b² )
a³ + b³ = (a + b)³ - 3ab( a + b)
a³ - b³ = (a - b)( a² + ab + b²)
a³ - b³ = (a - b)³ + 3ab ( a - b )
______________________________
10√2Molecular mass=2*vapour density
Molecular mass=2*vapour density =2*11.2
Molecular mass=2*vapour density =2*11.2=22.4 g
Molecular mass=2*vapour density =2*11.2=22.4 gAt NTP,
Molecular mass=2*vapour density =2*11.2=22.4 gAt NTP,volume occupied by 22.4 g of gas= 22.4 l
Molecular mass=2*vapour density =2*11.2=22.4 gAt NTP,volume occupied by 22.4 g of gas= 22.4 lvolume of 11.2g gas = 22.4/22.4*11.2
Molecular mass=2*vapour density =2*11.2=22.4 gAt NTP,volume occupied by 22.4 g of gas= 22.4 lvolume of 11.2g gas = 22.4/22.4*11.2= 11.2 l