Math, asked by applehoney2338, 1 month ago

P^3 - 2xyp + 4y^2 = 0 solve the differential equation

Answers

Answered by arshikhan8123
0

Concept-

First, separate the values of x and y means variables of x on one side and variables of y on the other side, then differentiate both the sides w.r.t. y and find the value of y.

Given-

Equation is given as : p³ - 2xpy + 4y² = 0

Find-

Solve the differential equation p³ - 2xpy + 4y² = 0

Solution-

p³ - 2xpy + 4y² = 0.......(a)    

⇒ 2xyp = p³ + 4y²

⇒ 2x = p²/ y + 4y/p

differentiating w.r.t. y gives,

2(dx/dy) = [(2p/y) (dp/dy)] - p²/y² + 4[1/p - y/p² (dy/dx)]   →         equation (1)

As, dy / dx = p ⇒ dx / dy = 1/p

equation (1) ⇒  2/p = [(2p/y)(dp/dy)] - [p²/y²] + 4[(1/p) - (y/p²) (dy/dp)]

⇒ [(2p/y)(dp/dy)] - p²/y² + 2/p - [(4y/p²)(dp/dy)] = 0

⇒ [p-2y( dp/dy)] [2y²-p³]=0

2y²-p³ gives singular solutions.

so, we consider,

⇒ [p-2y(dp/dy)] = 0

⇒ p² = cy ,        c=constant

(a) ⇒ p(p² - 2xy) = -4y²

    ⇒ p(cy - 2xy) = -4y²     (as p² = cy)

⇒ 2x-c=4y/p

⇒ (2x-c)²=16y²/p²

⇒ (2x-c)²=16y²/cy    (as p²=cy)

⇒ 16y = c(2x-c)

y=c(2x-c)²/16

Therefore, the value of p³ - 2xyp + 4y² = 0 is  y=c(2x-c)²/16.

#SPJ1

Similar questions