Math, asked by anishppadhi1973, 18 days ago

p/4 +5/2+r
Please answer this​

Answers

Answered by vishalzzvish
1

Answer:

Step-by-step explanation:

1/4 (p + 4 r + 10)

p/4 + 5/2 + r

(p + 10 + 4 r)/4

r = -p/4 - 5/2

Reduce[5/2 + p/4 + r == 0, {p, r}, Reals]

r == -5/2 - p/4

p = 4 n + 2, r = -n - 3, n element Z

Reduce[5/2 + p/4 + r == 0, {p, r}, Integers]

{{p == 2 + 4 C[1], r == -3 - C[1], Element[C[1], Integers]}}

d/dr(p/4 + 5/2 + r) = 1

D[5/2 + p/4 + r, r]

integral_(-L)^L integral_(-L)^L (5/2 + p/4 + r) dr dp = 10 L^2

Integrate[5/2 + p/4 + r, {p, -L, L}, {r, -L, L}]

10 L^2

Similar questions