p/4 +5/2+r
Please answer this
Answers
Answered by
1
Answer:
Step-by-step explanation:
1/4 (p + 4 r + 10)
p/4 + 5/2 + r
(p + 10 + 4 r)/4
r = -p/4 - 5/2
Reduce[5/2 + p/4 + r == 0, {p, r}, Reals]
r == -5/2 - p/4
p = 4 n + 2, r = -n - 3, n element Z
Reduce[5/2 + p/4 + r == 0, {p, r}, Integers]
{{p == 2 + 4 C[1], r == -3 - C[1], Element[C[1], Integers]}}
d/dr(p/4 + 5/2 + r) = 1
D[5/2 + p/4 + r, r]
integral_(-L)^L integral_(-L)^L (5/2 + p/4 + r) dr dp = 10 L^2
Integrate[5/2 + p/4 + r, {p, -L, L}, {r, -L, L}]
10 L^2
Similar questions