Math, asked by sanchana33, 11 months ago

P(5,-3) and Q(-7,y) and PQ=13 units, find y​

Answers

Answered by MaheswariS
1

\text{Formula used:}

\text{The distance between two points $(x_1,y_1)$ and $(x_2,y_2)$ is}

\boxed{\bf\:d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}}

\text{Given points are}

\text{P(5,-3) and Q(-7,y)}

\text{Now, PQ=13}

\implies\,\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}=13

\implies\,\sqrt{(5+7)^2+(-3-y)^2}=13

\implies\,\sqrt{144+(3+y)^2}=13

\text{Squaring on both sides, we get}

\implies\,144+(3+y)^2=169

\implies\,(3+y)^2=25

\implies\,3+y=\pm\,5

\implies\,y=-3\pm\,5

\implies\,y=-3+5,\;-3-5

\implies\,y=2,\;-8

\therefore\textbf{The values of y are 2 and -8}

Answered by AnkitaSahni
1

y=-8 or y= 2

•P(5,-3) and Q(-7,y)

• By distance formula

PQ = √[(X2-X1)²+(Y2-Y1)²]

PQ² = (X2-X1)²+(Y2-Y1)²

13² = (-7-5)² + (y+3)²

169 = (12)² + y² +9 +6y

0 = y² + 6y -16

0 = y² +8y -2y -16

0 = y( y+8 )-2( y+8 )

0 = ( y+8 )( y-2 )

y=-8 or y= 2

Similar questions