P(A) = 12, P(B) = 13 and P(A ∩ B) = 16. Are the events A and B independent?
Answers
Answered by
0
Answer:
Let A', B' denote the complements of A, B respectively.
Given that, P(A∩B')=1/6
or, P(A)P(B')=1/6
or, P(A)[1-P(B)]=1/6
or, P(A)=1/6[1-P(B)] ------------------------(1) and
P(A'∩B)=2/15
or, P(A')P(B)=2/15
or, [1-P(A)]P(B)=2/15
or, [1-1/6{1-P(B)}]P(B)=2/15
or, [{6-6P(B)-1}/{6-6P(B)}]P(B)=2/15
or, 15[5-6P(B)]P(B)=2[6-6P(B)]
or, 15[5-6P(B)]P(B)=12[1-P(B)]
or, 5[5-6P(B)]P(B)=4[1-P(B)]
or, 25P(B)-30[P(B)]²=4-4P(B)
or, -30[P(B)]²+25P(B)+4P(B)-4=0
or, 30[P(B)]²-29P(B)+4=0
or, 30a²-29a+4=0 where P(B)=a (say)
or, 30a²-24a-5a+4=0
or, 6a(5a-4)-1(5a-4)=0
or, (6a-1)(5a-4)=0
∴, either, 6a-1=0
or, 6a=1
or, a=1/6
or, P(B)=1/6
Or, 5a-4=0
or, 5a=4
or, a=4/5
or, P(B)=4/5
∴, P(B)=1/6, 4/5 Ans.
follow me
thank me
Similar questions