p(A) = 2/3 p(B) = 3/5 p(AuB)=5/6 find p(B/A)
Answers
Answered by
5
Answer:
13/20
Step-by-step explanation:
p(AUB) = P(A)+ P(B) - P(AB)
P(AB) = 2/3 + 3/5 - 5/6= 13/30
p(B/A) = p(AB)/P(A)= (13/30)/(2/3)= 13/20
Answered by
1
Answer:
p(B/A) =13/20
Step-by-step explanation:
p(A) =2/3
p(B) =3/5
p(AUB) =5/6
p(AUB) =p(A)+p(B)-p(AnB)
5/6=2/3+3/5-p(AnB)
5/6=19/15-p(AnB)
p(AnB) =19/15-5/6
p(AnB) =(114-75)/90
p(AnB) =39/90
p(AnB) =13/30
p(B/A) =p(AnB) /p(A)
=(13/30)/(2/3)
=13/20
p(B/A) =13/20
Similar questions