Math, asked by hrai3008, 3 months ago

P(a/2 ,4) is the midpoint of seg AB joining the points A(-6,5) and B(-2,3).
Find the value of a.


hrai3008: plz answer fast

Answers

Answered by ShírIey
89

❍ Let the given points be P(2/3, 4) is the mid point of line segment AB joining points A(-6, 5) and B(-2,3).

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀

\therefore Co-ordinates of point P.

⠀⠀⠀

:\implies\sf P = \bigg(\dfrac{-6 +2}{2} \bigg) , \bigg(\dfrac{5 + 3}{2} \bigg) \\\\\\:\implies\sf P = \bigg(\dfrac{-8}{2} , \dfrac{8}{2} \bigg) \\\\\\:\implies\sf  \Big(-4, 4 \Big)

⠀⠀⠀

It is given that,

⠀⠀⠀

:\implies\sf P = \Bigg(\dfrac{a}{2}, 4 \Bigg)

⠀⠀⠀

Therefore,

⠀⠀⠀

:\implies\sf \dfrac{a}{2} = -4\\\\\\:\implies\sf a = -4 \times 2 \\\\\\:\implies{\underline{\boxed{\frak{\purple{a = -8}}}}}\:\bigstar

⠀⠀⠀

⠀⠀\therefore\:{\underline{\sf{Hence, \ required \: value \: of \: 'a' \: is \: \bf{-8}.}}}⠀⠀

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀

\qquad\boxed{\bf{\mid{\overline{\underline{\pink{\bigstar\: Additional \: Information\: : }}}}}\mid}\\\\

  • To find out the distance b/w two given points the formula is, \sf D = \sqrt{\Big(x_2 - x_1 \Big)^2 + \Big(y_2 - y_1 \Big)^2}

hrai3008: Thank you
queenbee77: awsome
angelgirlnew: verified answer
Answered by Anonymous
41

Answer:

Required Answer :-

Let us assume P(2/3, 4) is the mid point of line segment AB joining points A(-6, 5) and B(-2,3).

Now

Co-ordinate of P :-

 \sf  P \:  = \bigg( \dfrac{ - 6 + 2}{2}  \bigg), \bigg ( \dfrac{5 + 3}{2}  \bigg)

 \sf \: P\:  =  \bigg( \dfrac{ - 8}{2}  \bigg), \bigg( \dfrac{8}{2}  \bigg)

 \sf \: P\:  =  - 4,4

Now,

 \sf \: P \:  =  \dfrac{a}{2}  - 4

 \sf \dfrac{a}{2}  =  - 4

 \sf \: a \:  =  - 4 \times 2

 \bf \pink{a =  - 8}


hrai3008: thank ou
Anonymous: Welcome
angelgirlnew: brilliant answer
angelgirlnew: nice presents
angelgirlnew: I mean presentation
Similar questions