Math, asked by shauladbalegmailcom, 4 months ago

p(a/2,4) is the midpoint of seg AB joining the points A(-6,5)and B(-2,3) find the value of A

Answers

Answered by Anonymous
60

Answer:

Explanation:

Given :

  • Point P is the midpoint of seg AB.
  • P(a/2 , 4) , A(-6 , 5) & B(-2 , 3).

To Find :

  • The value of a.

Solution :

Given, P(a/2 , 4) , A(-6 , 5) & B(-2 , 3).

Here,

  • x = a/2
  • y = 4
  • x1 = -6
  • y1 = 5
  • x2 = -2
  • y2 = 3

Given that, Point P is the midpoint of seg AB.

Applying midpoint formula,

x = x1 + x2/2 & y = y1 + y2/2

We need to find the value of a, So ;

x = x1 + x2/2

=> a/2 = -6 + (-2)/2

=> a/2 = -6 - 2/2

=> a/2 = -8/2

=> a/2 = -4

=> a = -4 × 2

=> a = -8

Hence :

The value of a is -8.

Answered by Sen0rita
20

Given : \sf \: P\left(\dfrac{a}{2},4\right)\: is \: the \: midpoint \: of \: segment \: AB \: joining \: the \: points \: A(-6 , 5) \: and \: B(-2 , 3).

To Find : \sf \: Value \: of \: a. ⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀__________________

Here

  •  \: \sf \: (x1 , y1 ) = \: (-6 , 5)
  • \sf \: (x , y) = \left(\dfrac{a}{2},4\right)
  • \sf \: (x2 , y2) = (-2 , 3)

 \: \:

A P P L Y M I D P O I N T F O R M U L A :

 \: \:

 \: \:

\bigstar\underline{\boxed{\sf\purple{{\left( x = \frac{x1 + x2}{2} \right)}}}}

 \:

 \: \sf:\implies \: \dfrac{a}{2} = \left( \dfrac{ - 6 + ( - 2)}{2} \right)

 \:

\sf:\implies \: \dfrac{a}{2} = \left( \dfrac{ - 6 - 2}{2} \right)

 \:

 \sf:\implies \: \dfrac{a}{2} = \cancel \dfrac{ - 8}{2}

 \:

 \sf:\implies \: \dfrac{a}{2} = - 4

 \:

\sf:\implies \: a = - 4 \times 2

 \:

\sf:\implies \: a = \underline{\boxed{\sf\purple{ - 8}}}\bigstar

\: \:

 \: \:

\sf\therefore{\underline{Hence, \: the \: value \: of \: a \: is \: \bold{ - 8}.}}

Similar questions