Math, asked by aroy62680, 10 months ago

p/a+q/b+r/c=1and a/p+b/q+c/r=0 so prove that p^2/a^2+q^2/b^2r^2/c^2=1​

Answers

Answered by amitnrw
1

Given : p/a+q/b+r/c=1  \frac{p}{a} +\frac{q}{b} + \frac{r}{c} = 1   and a/p+b/q+c/r=0    \frac{a}{p} + \frac{b}{q} + \frac{c}{r} = 0  

To find : Prove that p^2/a^2+q^2/b^2r^2/c^2=1​    \frac{p^2}{a^2} +\frac{q^2}{b^2}+ \frac{r^2}{c^2}    = 1

Solution:  

\frac{p}{a} +\frac{q}{b} + \frac{r}{c} = 1

Squaring both sides

\implies ( \frac{p}{a} +\frac{q}{b} + \frac{r}{c} )^2= 1^2

Using (x + y + z)² = x² + y² + z²  + 2(xy + yz  + zx)  

\implies ( \frac{p}{a})^2 +(\frac{q}{b})^2 + (\frac{r}{c} )^2 + 2(\frac{pq}{ab} +\frac{qr}{bc} + \frac{pr}{ac})= 1

Taking pqr/abc  common from bracket

\implies ( \frac{p}{a})^2 +(\frac{q}{b})^2 + (\frac{r}{c} )^2 + 2(\frac{pqr}{abc} ) (\frac{c}{r} +\frac{a}{p} + \frac{b}{q})= 1

\implies ( \frac{p}{a})^2 +(\frac{q}{b})^2 + (\frac{r}{c} )^2 + 2(\frac{pqr}{abc} ) (\frac{a}{p} + \frac{b}{q} + \frac{c}{r} )= 1

Substitute given value of  \frac{a}{p} + \frac{b}{q} + \frac{c}{r} = 0  

\implies ( \frac{p}{a})^2 +(\frac{q}{b})^2 + (\frac{r}{c} )^2 + 2(\frac{pqr}{abc} ) (0 )= 1

\implies ( \frac{p}{a})^2 +(\frac{q}{b})^2 + (\frac{r}{c} )^2 + 0 = 1

\implies ( \frac{p}{a})^2 +(\frac{q}{b})^2 + (\frac{r}{c} )^2   = 1

\implies ( \frac{p^2}{a^2}) +(\frac{q^2}{b^2}) + (\frac{r^2}{c^2} )   = 1

\implies \frac{p^2}{a^2} +\frac{q^2}{b^2}+ \frac{r^2}{c^2}    = 1

QED

Hence Proved

Learn More:

28. If x = a(b-c), y = b(c - a), z = c(a - b), find the value ofOr2​

https://brainly.in/question/12208457

If by+cz/b²+c²=cz+ax/c²+a²=ax+by/a²+b² then prove that x/a=y/b=z/c

https://brainly.in/question/11760840

Similar questions