Math, asked by asmabegum8143199913, 11 months ago

P and Q are any two points lying on the sides DC and AD of parallelogram ABCD show that area of triangle APB =area of triangle BQC​

Answers

Answered by Anonymous
7

Given: In parallelogram ABCD, P & Q any two points lying on the sides DC and AD.

To show:

ar (APB) = ar (BQC).

Proof:

Here, ΔAPB and ||gm ABCD stands on the same base AB and lie between same parallel AB and DC.

Therefore,

ar(ΔAPB) = 1/2 ar(||gm ABCD) — (i)

Similarly,

Parallelogram ABCD and ∆BQC stand on the same base BC and lie between the same parallel BC and AD.

ar(ΔBQC) = 1/2 ar(||gm ABCD) — (ii)

From eq (i) and (ii),

we have

 ar(ΔAPB) = ar(ΔBQC)

Answered by sarojinipanda02
4

Step-by-step explanation:

If a parallelogram and a triangle are on the same base and between the same parallels then area of the triangle is half the area of the parallelogram.

==========================================================

Given: In parallelogram ABCD, P & Q any two points lying on the sides DC and AD.

To show:

ar (APB) = ar (BQC).

Proof:

Here, ΔAPB and ||gm ABCD stands on the same base AB and lie between same parallel AB and DC.

Therefore,

ar(ΔAPB) = 1/2 ar(||gm ABCD) — (i)

Similarly,

Parallelogram ABCD and ∆BQC stand on the same base BC and lie between the same parallel BC and AD.

ar(ΔBQC) = 1/2 ar(||gm ABCD) — (ii)

From eq (i) and (ii),

we have

ar(ΔAPB) = ar(ΔBQC)

=========================================================

Hope this will help you...

mark me as brain list I will follow you plz plz plz

Similar questions