Math, asked by kynajain2006, 3 months ago

P and T are the mid points of sides XY and YZ respectively of triangle XYZ. If the perimeter of the triangle XYZ is 35 cm, compute the perimeter of triangle XP. (Please answer asap with working) ​

Answers

Answered by cutygirl22
18

\huge{\underline{\mathtt{\red{A}\pink{N}\green{S}\blue{W}\purple{E}\orange{R}}}}

Given

Given XY

Given XYXP

Given XYXP

Given XYXP =

Given XYXP = 3

Given XYXP = 32

Given XYXP = 32

Given XYXP = 32

Given XYXP = 32 Referring figure,

Given XYXP = 32 Referring figure,AreaofΔXYZ

Given XYXP = 32 Referring figure,AreaofΔXYZAreaofΔXPQ

Given XYXP = 32 Referring figure,AreaofΔXYZAreaofΔXPQ

Given XYXP = 32 Referring figure,AreaofΔXYZAreaofΔXPQ =

Given XYXP = 32 Referring figure,AreaofΔXYZAreaofΔXPQ = 2

Given XYXP = 32 Referring figure,AreaofΔXYZAreaofΔXPQ = 21

Given XYXP = 32 Referring figure,AreaofΔXYZAreaofΔXPQ = 21

Given XYXP = 32 Referring figure,AreaofΔXYZAreaofΔXPQ = 21 YZ×XM

Given XYXP = 32 Referring figure,AreaofΔXYZAreaofΔXPQ = 21 YZ×XM2

Given XYXP = 32 Referring figure,AreaofΔXYZAreaofΔXPQ = 21 YZ×XM21

Given XYXP = 32 Referring figure,AreaofΔXYZAreaofΔXPQ = 21 YZ×XM21

Given XYXP = 32 Referring figure,AreaofΔXYZAreaofΔXPQ = 21 YZ×XM21 PQ×XL

Given XYXP = 32 Referring figure,AreaofΔXYZAreaofΔXPQ = 21 YZ×XM21 PQ×XL

Given XYXP = 32 Referring figure,AreaofΔXYZAreaofΔXPQ = 21 YZ×XM21 PQ×XL

Given XYXP = 32 Referring figure,AreaofΔXYZAreaofΔXPQ = 21 YZ×XM21 PQ×XL =

Given XYXP = 32 Referring figure,AreaofΔXYZAreaofΔXPQ = 21 YZ×XM21 PQ×XL = YZ

Given XYXP = 32 Referring figure,AreaofΔXYZAreaofΔXPQ = 21 YZ×XM21 PQ×XL = YZPQ

Given XYXP = 32 Referring figure,AreaofΔXYZAreaofΔXPQ = 21 YZ×XM21 PQ×XL = YZPQ

Given XYXP = 32 Referring figure,AreaofΔXYZAreaofΔXPQ = 21 YZ×XM21 PQ×XL = YZPQ ×

Given XYXP = 32 Referring figure,AreaofΔXYZAreaofΔXPQ = 21 YZ×XM21 PQ×XL = YZPQ × YZ

Given XYXP = 32 Referring figure,AreaofΔXYZAreaofΔXPQ = 21 YZ×XM21 PQ×XL = YZPQ × YZPQ

Given XYXP = 32 Referring figure,AreaofΔXYZAreaofΔXPQ = 21 YZ×XM21 PQ×XL = YZPQ × YZPQ

Given XYXP = 32 Referring figure,AreaofΔXYZAreaofΔXPQ = 21 YZ×XM21 PQ×XL = YZPQ × YZPQ

Given XYXP = 32 Referring figure,AreaofΔXYZAreaofΔXPQ = 21 YZ×XM21 PQ×XL = YZPQ × YZPQ =(

Given XYXP = 32 Referring figure,AreaofΔXYZAreaofΔXPQ = 21 YZ×XM21 PQ×XL = YZPQ × YZPQ =( YZ

Given XYXP = 32 Referring figure,AreaofΔXYZAreaofΔXPQ = 21 YZ×XM21 PQ×XL = YZPQ × YZPQ =( YZPQ

Given XYXP = 32 Referring figure,AreaofΔXYZAreaofΔXPQ = 21 YZ×XM21 PQ×XL = YZPQ × YZPQ =( YZPQ

Given XYXP = 32 Referring figure,AreaofΔXYZAreaofΔXPQ = 21 YZ×XM21 PQ×XL = YZPQ × YZPQ =( YZPQ )

Given XYXP = 32 Referring figure,AreaofΔXYZAreaofΔXPQ = 21 YZ×XM21 PQ×XL = YZPQ × YZPQ =( YZPQ ) 2

Given XYXP = 32 Referring figure,AreaofΔXYZAreaofΔXPQ = 21 YZ×XM21 PQ×XL = YZPQ × YZPQ =( YZPQ ) 2 =(

Given XYXP = 32 Referring figure,AreaofΔXYZAreaofΔXPQ = 21 YZ×XM21 PQ×XL = YZPQ × YZPQ =( YZPQ ) 2 =( 3

Given XYXP = 32 Referring figure,AreaofΔXYZAreaofΔXPQ = 21 YZ×XM21 PQ×XL = YZPQ × YZPQ =( YZPQ ) 2 =( 32

Given XYXP = 32 Referring figure,AreaofΔXYZAreaofΔXPQ = 21 YZ×XM21 PQ×XL = YZPQ × YZPQ =( YZPQ ) 2 =( 32

Given XYXP = 32 Referring figure,AreaofΔXYZAreaofΔXPQ = 21 YZ×XM21 PQ×XL = YZPQ × YZPQ =( YZPQ ) 2 =( 32 )

Given XYXP = 32 Referring figure,AreaofΔXYZAreaofΔXPQ = 21 YZ×XM21 PQ×XL = YZPQ × YZPQ =( YZPQ ) 2 =( 32 ) 2

Given XYXP = 32 Referring figure,AreaofΔXYZAreaofΔXPQ = 21 YZ×XM21 PQ×XL = YZPQ × YZPQ =( YZPQ ) 2 =( 32 ) 2 =

Given XYXP = 32 Referring figure,AreaofΔXYZAreaofΔXPQ = 21 YZ×XM21 PQ×XL = YZPQ × YZPQ =( YZPQ ) 2 =( 32 ) 2 = 9

Given XYXP = 32 Referring figure,AreaofΔXYZAreaofΔXPQ = 21 YZ×XM21 PQ×XL = YZPQ × YZPQ =( YZPQ ) 2 =( 32 ) 2 = 94

Given XYXP = 32 Referring figure,AreaofΔXYZAreaofΔXPQ = 21 YZ×XM21 PQ×XL = YZPQ × YZPQ =( YZPQ ) 2 =( 32 ) 2 = 94

ʜᴏᴩᴇ ɪᴛ' ʜᴇʟᴩꜱ ᴜʜʜ :)

Answered by YASHTYAGIVIIB008515
0

Answer:

y rs yiraiyrcayrxiaryxiqrxyqiʕ ꈍᴥꈍʔ(✪㉨✪)ʕ´•ᴥ•`ʔʕ·ᴥ·ʔ-ᄒᴥᄒ-(≧(エ)≦ )(´(ェ)`)ʕ º ᴥ ºʔ-ᄒᴥᄒ-(´(ェ)`)(=^・ェ・^=)(・(ェ)・)ʕ º ᴥ ºʔ-ᄒᴥᄒ-(≧(エ)≦ )(・(ェ)・)(´(ェ)`)ʕ º ᴥ ºʔ

Similar questions