Math, asked by sarojkumardash19, 2 months ago

P.I of (D2 – 2D + 1)y = coshx is​

Answers

Answered by brokendreams
4

\frac{1}{8}(2x^{2} e^{x} + e^{-x}) is the P.I. of the differential equation (D^2 - 2D + 1)y = coshx

Step-by-step explanation:

Given: the differential equation (D^2 - 2D + 1)y = coshx

To Find: Particular Integral (P.I.) of the given differential equation

Solution:

  • Finding the Particular Integral (P.I.) of the given differential equation

We have the differential equation (D^2 - 2D + 1)y = coshx such that we can write,

\Rightarrow y = \frac{1}{(D^2 - 2D + 1)} coshx

\Rightarrow y = \frac{1}{(D^2 - 2D + 1)} \Big( \frac{e^x \ +  \ e^{-x}}{2} \Big) \ \because cosh x = \Big( \frac{e^x \ +  \ e^{-x}}{2} \Big)

\Rightarrow y = \frac{1}{2}  \Big( \frac{e^x}{D^2 - 2D + 1} \Big) + \frac{1}{2}  \Big( \frac{e^{-x}}{D^2 - 2D + 1} \Big) \ \cdots \cdots (1)

Now, considering

y_1 = \frac{1}{2}  \Big( \frac{e^x}{D^2 - 2D + 1} \Big)

Using the rule \ \frac{1}{f(D)}e^{ax} =   \frac{1}{f''(a)}x^{2} e^{ax} \ \text{if} \ f(a)=0 \ \& \ f'(a)=0, we get

\Rightarrow y_1 = \frac{1}{2}  \Big( \frac{e^x}{D^2 - 2D + 1} \Big) = \frac{1}{2}  \Big( \frac{x^{2} e^x}{2} \Big) \ \cdots \cdots (2)

Also, let

y_2 = \frac{1}{2}  \Big( \frac{e^{-x}}{D^2 - 2D + 1} \Big)

Using the rule \ \frac{1}{f(D)}e^{ax} =   \frac{1}{f(a)}e^{ax}, we get

\Rightarrow y_2 = \frac{1}{2}  \Big( \frac{e^x}{(-1)^2 - 2(-1) + 1} \Big) = \frac{1}{2}  \Big( \frac{e^{-x}}{4} \Big) \ \cdots \cdots (3)

Substituting (2) and (3) in (1), we get,

y = \frac{1}{8}(2x^{2} e^{x} + e^{-x})

Hence, \frac{1}{8}(2x^{2} e^{x} + e^{-x}) is the P.I. of the differential equation (D^2 - 2D + 1)y = coshx

Similar questions