P is any point on side AD of a parallelogram ABCD(fig12.34)
Prove that:ar(∆PAB) + ar(∆PCD)= ar(∆PBC)
Attachments:
Answers
Answered by
8
Hello Mate!
Since ||gm ABCD and triangle PBC lie on same base so
ar( tri PBC ) = 1/2 ar( ||gm ABCD )
2 ar( tri PBC ) = ar( ||gm ABCD )
ar( ||gm ABCD ) = ar( tri PCD ) + ar( tri PAB ) + ar( tri PBC )
2 ar( tri PBC ) = ar( tri PCD ) + ar( tri PAB ) + ar( tri PBC )
2ar( tri PBC ) - ar( tri PBC ) = ar( tri PCD ) + ar( tri PAB )
ar( tri PBC ) = ar( tri PCD ) + ar( PAB )
Hence Proved ( Q.E.D )
Sorry for complicated abbriviations.
Tri stands for triangle, ar for area and ||gm for parallelogram.
Have great future ahead!
Since ||gm ABCD and triangle PBC lie on same base so
ar( tri PBC ) = 1/2 ar( ||gm ABCD )
2 ar( tri PBC ) = ar( ||gm ABCD )
ar( ||gm ABCD ) = ar( tri PCD ) + ar( tri PAB ) + ar( tri PBC )
2 ar( tri PBC ) = ar( tri PCD ) + ar( tri PAB ) + ar( tri PBC )
2ar( tri PBC ) - ar( tri PBC ) = ar( tri PCD ) + ar( tri PAB )
ar( tri PBC ) = ar( tri PCD ) + ar( PAB )
Hence Proved ( Q.E.D )
Sorry for complicated abbriviations.
Tri stands for triangle, ar for area and ||gm for parallelogram.
Have great future ahead!
Similar questions