P is the point in the exterior of ⦿ (O,r) and the tangents from P to the circle touch the circle at X and Y.
(1) Find OP, if r = 12, XP = 5
(2) Find m∠XPO, if m∠XOY = 110
(3) Find r, if OP = 25 and PY = 24
(4) Find m∠XOP, if m∠XPO = 80
Answers
Answered by
23
i ) OX = r = 12 , XP = 5 , OP = ?
Since OX is perpendicular to XP
In ∆OPX , we have
OX² = XP² + OP²
r² = XP² + OP²
12² = 5² + OP²
144 - 25 = OP²
OP² = 119
OP = √119
ii ) m<XPO = ? , m<XOY = 110°
m<XPO + m<XOY = 180°
m<XPO + 110° = 180°
m<XPO = 180° - 110°
= 70°
iii ) OP = 25 , PY = 24 , r = OY = ?
OY is perpendicular to PY
In ∆OYP ,
OP² = PY² + OY²
25² = 24² + r²
r² = 25² - 24²
r² = ( 25 + 24 )( 25 - 24 )
r² = 49
r = √49
r = 7
iv ) m<XOP = ? , m<XPO = 80°
In ∆OXP , m<PXO = 90°
m<XOP + m<XPO = 90°
m<XOP + 80° = 90°
m<XOP = 90° - 80°
m<XOP = 10°
I hope this helps you.
: )
Since OX is perpendicular to XP
In ∆OPX , we have
OX² = XP² + OP²
r² = XP² + OP²
12² = 5² + OP²
144 - 25 = OP²
OP² = 119
OP = √119
ii ) m<XPO = ? , m<XOY = 110°
m<XPO + m<XOY = 180°
m<XPO + 110° = 180°
m<XPO = 180° - 110°
= 70°
iii ) OP = 25 , PY = 24 , r = OY = ?
OY is perpendicular to PY
In ∆OYP ,
OP² = PY² + OY²
25² = 24² + r²
r² = 25² - 24²
r² = ( 25 + 24 )( 25 - 24 )
r² = 49
r = √49
r = 7
iv ) m<XOP = ? , m<XPO = 80°
In ∆OXP , m<PXO = 90°
m<XOP + m<XPO = 90°
m<XOP + 80° = 90°
m<XOP = 90° - 80°
m<XOP = 10°
I hope this helps you.
: )
Attachments:
Similar questions