Physics, asked by rnarayana183gmailcom, 11 months ago

p
l
e
a
s
e
answer
i
t
i
s
a
j
e
e
q
u
e
s
t
i
o
n
2
0
1
8​

Attachments:

Answers

Answered by shadowsabers03
0

Answer:-

\displaystyle\Large\boxed {\sf {(c)\ \tan\theta=\dfrac {1}{2}}}

Solution:-

We know that moment of force,

\displaystyle\longrightarrow\sf{\tau=Fr\sin\alpha}

where r is the separation of the applied force F about point A and \displaystyle\sf {\alpha} is the angle between F and r.

Here,

\displaystyle\longrightarrow\sf{r=AB}

Since the angle of F with the horizontal is \displaystyle\sf {\theta} and the angle between F and r is \displaystyle\sf {\alpha,} then the angle (acute) of r = AB with the horizontal will be \displaystyle\sf {(180^o-\alpha-\theta)} and is given by,

\displaystyle\longrightarrow\sf{\tan (180^o-\alpha-\theta)=\dfrac {4}{2}}

\displaystyle\longrightarrow\sf{\tan (180^o-(\alpha+\theta))=2}

Since \displaystyle\sf {\tan (180^o-x)=-\tan x,}

\displaystyle\longrightarrow\sf{-\tan (\alpha+\theta)=2\quad\quad\dots (1)}

Now, consider the moment of force,

\displaystyle\longrightarrow\sf{\tau=Fr\sin\alpha}

For maximum value of \displaystyle\sf {\tau,\ \sin\alpha} should be maximum. Thus,

\displaystyle\longrightarrow\sf{\sin\alpha=1}

Since \displaystyle\sf {0^o\leq\alpha\leq90^o,}

\displaystyle\longrightarrow\sf{\alpha=90^o}

Then (1) becomes,

\displaystyle\longrightarrow\sf{-\tan (90^o+\theta)=2}

Since \displaystyle\sf {\tan (90^o+x)=-\cot x,}

\displaystyle\longrightarrow\sf{\cot\theta=2}

\displaystyle\longrightarrow\sf {\underline {\underline {\tan\theta=\dfrac {1}{2}}}}

Hence (c) is the answer.

Attachments:
Similar questions