p of x is equal to x cube plus x square plus root five x plus root five then find p of minus root five
Answers
Answer:
Since −5 is a root of the equation 2x
2
+px−15=0. Therefore,
2(−5)
2
−5p−15=0⇒p=7
Putting p=7 in p(x
2
+x)+k=0 we get
7x
2
+7x+k=0
Here ,a=7,b=7;c=k
This equation will have equal roots, if
Discriminant =b
2
−4ac=0 ⇒49−4×7×k=0⇒k=
28
49
⇒k=
4
7
Step-by-step explanation:
Answer:
Answer: The answer is 47.
Step-by-step explanation: We are given that
p=\dfrac{3-\sqrt5}{3+\sqrt5},~~q=\dfrac{3+\sqrt5}{3-\sqrt5}.p=3+53−5, q=3−53+5.
We are to find the value of p² + q².
We have
\begin{gathered}p^2+q^2\\\\=\left(\dfrac{3-\sqrt5}{3+\sqrt5}\right)^2+\left(\dfrac{3+\sqrt5}{3-\sqrt5}\right)^2\\\\\\=\dfrac{(3-\sqrt5)^4+(3+\sqrt5)^4}{(9-5)^2}\\\\\\=\dfrac{(14-6\sqrt5)^2+(14+6\sqrt5)^2}{16}\\\\\\=\dfrac{196-168\sqrt5+180+196+168\sqrt5+180}{16}\\\\\\=\dfrac{752}{16}\\\\=47.\end{gathered}p2+q2=(3+53−5)2+(3−53+5)2=(9−5)2(3−5)4+(3+5)4=16(14−65)2+(14+65)2=16196−1685+180+196+1685+180=16752=47.
Thus, the required value is 47.