Math, asked by Anonymous, 1 month ago

p+p²+p³+p⁴+p⁵+p⁶+p⁷)/(p‐³+p‐⁴+ p‐⁵+p‐⁶+p‐⁷+p‐⁸+p‐⁹)​​

Answers

Answered by Sahan677
8

 \bold \red{ \frac{p+p²+p³+p⁴+p⁵+p⁶+p⁷)}{p^{−3}+p^{−4}+p^{−5}+p^{−6}+p^{−7}+p^{−8}+p^{−9}}}

 \bold \green{ = \frac{p^{49}+p^{48}+p^{47}+p^{46}+p^{45}+p^{44}+p^{43}}{p^{39}+p^{38}+p^{37}+p^{36}+p^{35}+p^{34}+p^{33}}}

 \bold\pink{ = \frac{p^{16}+p^{15}+p^{14}+p^{13}+p^{12}+p^{11}+p^{10}}{p^6+p^5+p^4+p^3+p^2+p+1} }

 \bold{  \bold \blue{ =} \blue{\frac{pppppppppp(p^6+p^5+p^4+p^3+p^2+p+1)}{p^6+p^5+p^4+p^3+p^2+p+1}}}

 \bold \purple{ = p {}^{10}}

Answered by kamalhajare543
15

Answer:

Given:

\mathsf{\dfrac{p+p^2+p^3+p^4+p^5+p^6+p^7}{p^{-3}+p^{-4}+p^{-5}+p^{-6}+p^{-7}+p^{-8}+p^{-9}}}

\underline{\textsf{To find:}}

\textsf{The value of}

\mathsf{\dfrac{p+p^2+p^3+p^4+p^5+p^6+p^7}{p^{-3}+p^{-4}+p^{-5}+p^{-6}+p^{-7}+p^{-8}+p^{-9}}}

 \red{\underline{\textsf{Solution:}} }

\Consider,

\mathsf{\dfrac{p+p^2+p^3+p^4+p^5+p^6+p^7}{p^{-3}+p^{-4}+p^{-5}+p^{-6}+p^{-7}+p^{-8}+p^{-9}}}

\textsf{Multiply both numerator and denominator by}\,\mathsf{p^{10}}

\mathsf{=\dfrac{p+p^2+p^3+p^4+p^5+p^6+p^7}{p^{-3}+p^{-4}+p^{-5}+p^{-6}+p^{-7}+p^{-8}+p^{-9}}{\times}\dfrac{p^{10}}{p^{10}}}

\mathsf{=\dfrac{(p+p^2+p^3+p^4+p^5+p^6+p^7)p^{10}}{p^7+p^6+p^5+p^4+p^3+p^2+p}}

\mathsf{=\dfrac{(p+p^2+p^3+p^4+p^5+p^6+p^7)p^{10}}{p+p^2+p^3+p^4+p^5+p^6+p^7}}

\mathsf{=p^{10}}

Hence This is Answer.

Similar questions