Math, asked by WARmachine68, 1 month ago

p please solve the problem and give complete solution of it.​

Attachments:

Answers

Answered by sfybhx1378
0

By seeing this u understand properly

Attachments:
Answered by mathdude500
3

\large\underline{\sf{Given \:Question - }}

 \sf \: If \: y =  {x}^{2} \: sin( {x}^{3}), \: find \:  \displaystyle \int \rm \:y \: dx

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\: \sf \: \: y =  {x}^{2} \: sin( {x}^{3})

On integrating both sides, w. r. x, we get

\rm :\longmapsto\: \sf \: \: \displaystyle \int \rm \:y  \: dx=  \displaystyle \int \rm \:{x}^{2} \: sin( {x}^{3}) \: dx

So integrate such integral, we use method of Substitution.

So,

Let we substitute,

 \red{\rm :\longmapsto\: {x}^{3} = t}

 \red{\rm :\longmapsto\: 3{x}^{2}dx = dt}

 \red{\rm :\longmapsto\: {x}^{2}dx = \dfrac{dt}{3} }

So, on substituting these values in above integral, we get

\rm :\longmapsto\: \sf \: \: \displaystyle \int \rm \:y  \: dx=  \displaystyle \int \rm \: \: sin( t) \: \frac{dt}{3}

\rm :\longmapsto\: \sf \: \: \displaystyle \int \rm \:y  \: dx=  \frac{1}{3}  \displaystyle \int \rm \: \: sin( t) \: dt

We know that

\boxed{ \sf \: \displaystyle \int \rm \:sinx \: dx \:  =  \:  -  \: cosx \:  +  \: c}

So, using this we get

\rm :\longmapsto\: \sf \: \: \displaystyle \int \rm \:y  \: dx=  \frac{1}{3}( -  \: cost) + c

\rm :\longmapsto\: \sf \: \: \displaystyle \int \rm \:y  \: dx=   \: -  \:  \frac{1}{3}cost + c

\bf :\longmapsto\: \bf \: \: \displaystyle \int \bf \:y  \: dx=   \: -  \:  \frac{1}{3}cos {x}^{3}  + c

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x)  \: dx\\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf  -  \: cosx+ c \\ \\ \sf cosx & \sf  \: sinx + c\\ \\ \sf  {sec}^{2} x & \sf  tanx + c\\ \\ \sf  {cosec}^{2}x  & \sf  -  cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx  \: cotx& \sf  -  \: cosecx + c\\ \\ \sf  tanx & \sf  logsecx + c\\ \\ \sf  \dfrac{1}{x}  & \sf logx+ c\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  + c\end{array}} \\ \end{gathered}

Similar questions