Math, asked by omsaithati7598, 2 months ago

(p, q) and (q, p) internally in the ratio p-q:p+q​

Answers

Answered by Anonymous
62

Given that :-

( p, q) and (q , p) divides internally in ratio p- q : p+ q

To find :-

The co-ordinates of the point

Solution:-

If the point {(x_1,y_1)} and {(x_2,y_2)} divides the line segemnt in ratio m:n then the co-ordinates are

Section formula Internal division :-

\bigg(\dfrac{mx_2+nx_1}{m+n}, \dfrac{my_2+ny_1}{m+n}\bigg)

{x_1 = p} {x_2 = q} {y_1 = q} {y_2 =p}

  • m = p-q
  • n = p+q

Substituing the values :-

\bigg(\dfrac{mx_2+nx_1}{m+n}, \dfrac{my_2+ny_1}{m+n}\bigg)

\bigg(\dfrac{(p-q)(q)+(p+q)(p)}{p-q +p+q}, \dfrac{(p-q)(p)+(p+q)(q)}{p-q+p+q}\bigg)

\bigg(\dfrac{pq-q^2+p^2+pq}{2p}, \dfrac{p^2-pq+pq+q^2}{2p}\bigg)

\bigg(\dfrac{-q^2+p^2+2pq}{2p}, \dfrac{p^2+q^2}{2p}\bigg)

\bigg(\dfrac{p^2+2pq-q^2}{2p}, \dfrac{p^2+q^2}{2p}\bigg)-Required answer

So, the point \bigg(\dfrac{p^2+2pq-q^2}{2p}, \dfrac{p^2+q^2}{2p}\bigg) divides the linesegemnt (p,q) and (q,p) internally in ratio p-q : p+q

__________________

Know more :-

Distance formula:-

\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}

Centroid formula:-

\bigg(\dfrac{x_1+x_2+x_3}{3},\dfrac{y_1+y_2+y_3}{3}\bigg)

Section formula External division:-

\bigg(\dfrac{mx_2-nx_1}{m-n}, \dfrac{my_2-ny_1}{m-n}\bigg)

Mid point formula:-

\bigg(\dfrac{x_1+x_2}{2} , \dfrac{y_1+y_2}{2}\bigg)

Similar questions