p,q, and r are the mid points of the sides bc, ca, and ab respectively of a triangle abc. pr and bq meet at x, cr and pq meet at y. if bc =13 cm find xy
Answers
Step-by-step explanation:
Conservation of momentum is a fundamental law of physics, which states that the total momentum of an isolated system is conserved. ... In other words, the total momentum of a system of objects remains constant during any interaction, if no external force acts on the system.
Given
ABC is a Triangle.
P is the m.p of BC
Q is the m.p of CA
R is the m.p of AB
To prove
XY =  BC
Proof
In ΔABC
R is the midpoint of AB.
Q is the midpoint of AC.
∴ By Midpoint Theorem,
RQ║BC
RQ║BP → 1 [Parts of Parallel lines]
RQ =  BC → 2
Since P is the midpoint of BC,
RQ = BP → 3
From 1 and 3,
BPQR is a Parallelogram.
BQ and PR intersect at X
Similarly,
PCQR is a Parallelogram.
PQ and CR intersect at Y.
 X and Y are Midpoints of sides PR and PQ respectively.
In ΔPQR
X is the midpoint of PR
Y is the midpoint of PQ
∴ By Midpoint Theorem,
XY =  RQ
From 3,
XY =  +  BC
XY =  BC
Step-by-step explanation:
I hope it helps you
[tex][/tex]