Math, asked by animator7745, 5 hours ago

~(p Λ q) is logically equivalen to ______
Select one:
a. p Λ ~q
b. ~ p V ~q
c. ~ p Λ q
d. ~ p Λ ~q

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Consider

\begin{gathered}\boxed{\begin{array}{c|c|c|c|c} \bf p & \bf q& \bf p \: \land \: q& \bf  \sim (p\:  \land \: q)& \bf  p \:  \land \:  \sim q\\ \frac{\qquad}{} & \frac{\qquad}{}& \frac{\qquad}{} & \frac{\qquad}{}& \frac{\qquad}{}\\ \sf T & \sf T & \sf T& \sf F& \sf F\\ \\\sf T & \sf F & \sf F& \sf T& \sf T\\ \\\sf F & \sf T & \sf F& \sf T& \sf F\\ \\\sf F & \sf F & \sf F& \sf T& \sf F \end{array}} \\ \end{gathered}

Its means option (a) is not correct.

Now, Consider

\begin{gathered}\boxed{\begin{array}{c|c|c|c|c} \bf p & \bf q& \bf p \: \land \: q& \bf  \sim (p\:  \land \: q)& \bf  \sim p \:  \lor \:  \sim q\\ \frac{\qquad}{} & \frac{\qquad}{}& \frac{\qquad}{} & \frac{\qquad}{}& \frac{\qquad}{}\\ \sf T & \sf T & \sf T& \sf F& \sf F\\ \\\sf T & \sf F & \sf F& \sf T& \sf T\\ \\\sf F & \sf T & \sf F& \sf T& \sf T\\ \\\sf F & \sf F & \sf F& \sf T& \sf T \end{array}} \\ \end{gathered}

It means, option (b) is correct.

Now, Consider

\begin{gathered}\boxed{\begin{array}{c|c|c|c|c} \bf p & \bf q& \bf p \: \land \: q& \bf  \sim (p\:  \land \: q)& \bf  q \:  \land \:  \sim p\\ \frac{\qquad}{} & \frac{\qquad}{}& \frac{\qquad}{} & \frac{\qquad}{}& \frac{\qquad}{}\\ \sf T & \sf T & \sf T& \sf F& \sf F\\ \\\sf T & \sf F & \sf F& \sf T& \sf F\\ \\\sf F & \sf T & \sf F& \sf T& \sf T\\ \\\sf F & \sf F & \sf F& \sf T& \sf F \end{array}} \\ \end{gathered}

It means, Option (c) is not correct

Now, Consider

\begin{gathered}\boxed{\begin{array}{c|c|c|c|c} \bf p & \bf q& \bf p \: \land \: q& \bf  \sim (p\:  \land \: q)& \bf  \sim p \:  \land \:  \sim q\\ \frac{\qquad}{} & \frac{\qquad}{}& \frac{\qquad}{} & \frac{\qquad}{}& \frac{\qquad}{}\\ \sf T & \sf T & \sf T& \sf F& \sf F\\ \\\sf T & \sf F & \sf F& \sf T& \sf F\\ \\\sf F & \sf T & \sf F& \sf T& \sf F\\ \\\sf F & \sf F & \sf F& \sf T& \sf T \end{array}} \\ \end{gathered}

It means, Option (d) is not correct.

\bf\implies \: \sim\: (p \:  \land \: q) \:  \equiv \:  \sim \: p \:  \lor \:  \sim \: q

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know

\begin{gathered}\boxed{\begin{array}{c|c|c|c|c} \bf p & \bf q& \bf  \sim \: p & \bf  \sim \: q& \bf  \sim \: q \:\lor \: \sim \: p)\\ \frac{\qquad}{} & \frac{\qquad}{}& \frac{\qquad}{} & \frac{\qquad}{}& \frac{\qquad}{}\\ \sf T & \sf T & \sf F& \sf F& \sf F\\ \\\sf T & \sf F & \sf F& \sf T& \sf T\\ \\\sf F & \sf T & \sf T& \sf F& \sf T\\ \\\sf F & \sf F & \sf T& \sf T& \sf T  \end{array}} \\ \end{gathered}

\begin{gathered}\boxed{\begin{array}{c|c|c|c|c} \bf p & \bf q& \bf  \sim \: p & \bf  \sim \: q& \bf  \sim \: q \:\land \: \sim \: p)\\ \frac{\qquad}{} & \frac{\qquad}{}& \frac{\qquad}{} & \frac{\qquad}{}& \frac{\qquad}{}\\ \sf T & \sf T & \sf F& \sf F& \sf F\\ \\\sf T & \sf F & \sf F& \sf T& \sf F\\ \\\sf F & \sf T & \sf T& \sf F& \sf F\\ \\\sf F & \sf F & \sf T& \sf T& \sf T  \end{array}} \\ \end{gathered}

Similar questions