p/q+q/r+r/p=8 and q/p+r/q+p/r=11 then the value of p^3/q^3+q^3/r^3+r^3/p^3
Answers
Answered by
8
value of p³/q³ + q³/r³ + r³/p³ = 251.
given, p/q + q/r + r/p = 8 and q/p + r/q + p/r = 11
we have to find out p³/q³ + q³/r³ + r³/p³
let's trying formula,
a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)
let p/q = a , q/r = b and r/p = c
then, p³/q³ + q³/r³ + r³/p³ - 3(p/q)(q/r)(r/p) = (p/q + q/r + r/p){p²/q² + q²/r² + r²/p² - (p/q)(q/r) - (q/r)(r/p) - (r/p)(p/q)}
⇒p³/q³ + q³/r³ + r³/p³ - 3 = (8){(p²/q² + q²/r² + r²/p²) - p/r - q/p - r/q}
using formula, a² + b² + c² = (a + b + c)² - 2(ab + bc + ca)
p²/q² + q²/r² + r²/p² = (p/q + q/r + r/p)² - 2(p/r + q/p + r/q)
⇒p³/q³ + q³/r³ + r³/p³ - 3 = 8{(8)² - 3 × 11}
⇒p³/q³ + q³/r³ + r³/p³ = 3 + 8 {64 - 33}
= 3 + 8 × 31
= 3 + 248
= 251
Similar questions