P,Q,R and S are concyclic. PR bisects QS.if PQ=9 snd QR=8,RS=6 THEN PS=?
Answers
Answer:
PS = 12
Step-by-step explanation:
In the given figure
∵ PR bisects QS
∴ OQ = OS
In ΔOPQ and ΔOSR
∠OPQ = ∠OSR (angles in the same segment of circle)
Similarly
∠OQP = ∠ORS
∴ ΔOPQ ~ ΔOSR (AA similarity criterion)
∴ PQ/SR = OP/OS (corresponding sides of similar triangles are proportional)
∴ 9/6 = OP/OQ (∵ OP = OQ)
⇒ OP/OQ = 3/2
In ΔOPS and ΔOQR
∠OPS = ∠OQR (angles in the same segment of circle)
And ∠OSP = ∠ORQ (angles in the same segment of circle)
∴ ΔOPS ~ ΔOQR (AA similarity criterion)
∴ PS/QR = OP/OQ
⇒ PS/QR = 3/2
⇒ PS/8 = 3/2
⇒ PS = (3/2) × 8 = 12
Answer:12
Step-by-step explanation:
according to the property: PQ×QR = RS×PS
⇒ 9 × 8 = 6 × PS
⇒ PS = (9 × 8) ÷ 6
∴ PS = 12