P,q,r,s are vector of equal magnitude. if p+q-r=0 angle between p and q is tita1.if p+q-s=0 angle between p and s is tita2. the ratio of tita1 and tita2
Answers
Answer:
2
Explanation:
Given
p, q, r, and s are vectors of equal magnitude.
Let |p| = |q| = |r| = |s| = a units
Given
p + q - r = 0
⇒p +q = r
Squaring on both sides
⇒|p + q|² = |r|²
⇒|p|² + |q|² + 2 p.q = |r|² [∵|a+b|² = |a|²+|b|²+2a.b where a.b is dot product
of vectors a and b]
⇒a² + a² + 2|p||q| cos(p,q) = a² [∵|p| = |q| = |r| = |s| = a units]
⇒2a² + 2a² cos θ₁ = a² [∵ Angle between p and q is θ₁]
⇒ 2 + 2 cos θ₁ = 1
⇒ 2 cos θ₁ = -1
⇒cos θ₁ = -1/2
⇒cos θ₁ = cos 2π/3
∴ θ₁ = 2π/3 ___(1)
Given
p + q - s = 0
⇒p - s = -q
Squaring on both sides
⇒(p - s)² = (-q)²
⇒|p|² + |s|² - 2p.s = |q|² [∵ |a-b|²=|a|²+|b|²-2a.b where a.b is dot product]
⇒a² + a² - 2|p||s| cos (p,s) = a² [∵|p| = |q| = |r| = |s| = a units]
⇒2a² - 2a² cos θ₂ = a² [∵ Angle between p and s is θ₂]
⇒2 - 2 cos θ₂ = 1
⇒2 cos θ₂ = 2 - 1
⇒2 cos θ₂ = 1
⇒cos θ₂ = 1/2
⇒cos θ₂ = cos π/3
∴ θ₂ = π/3 ___(2)
∴θ₁: θ₂ = θ₁/ θ₂ = (2π/3)/(π/3)
∴θ₁: θ₂ = 2