Math, asked by ashu0841, 9 months ago

p+qw+rw²/
r+pw+qw² =w²​

Answers

Answered by pulakmath007
24

SOLUTION

TO PROVE

 \displaystyle \sf{ \frac{p + q \omega + r { \omega}^{2} }{r + p \omega + q { \omega}^{2} }  =   { \omega}^{2} \: }

 \displaystyle \sf{ where \:  \omega \:  \: is \: cube \: root \: of \: unity }

PROOF

 \displaystyle \sf{ \because \:  \omega \:  \: is \: cube \: root \: of \: unity }

So

 \sf{  { \omega}^{3} = 1 \: }

Now

 \displaystyle \sf{ \frac{p + q \omega + r { \omega}^{2} }{r + p \omega + q { \omega}^{2} }  \: }

Multiplying numerator and denominator both by \sf{ { \omega}^{2}  \: }

So

 \displaystyle \sf{ \frac{p + q \omega + r { \omega}^{2} }{r + p \omega + q { \omega}^{2} }  \: }

 =  \displaystyle \sf{   \frac{ { \omega}^{2} (p + q \omega + r { \omega}^{2}) }{ { \omega}^{2}(r + p \omega + q { \omega}^{2} )}  \: }

 =  \displaystyle \sf{   \frac{ { \omega}^{2} (p + q \omega + r { \omega}^{2}) }{(r { \omega}^{2} + p  { \omega}^{3} + q { \omega}^{4} )}  \: }

 =  \displaystyle \sf{   \frac{ { \omega}^{2} (p + q \omega + r { \omega}^{2}) }{r { \omega}^{2} +( p  \times 1 )+( q \times { \omega}^{} \times  { \omega}^{3}) }  \: }

 =  \displaystyle \sf{   \frac{ { \omega}^{2} (p + q \omega + r { \omega}^{2}) }{r { \omega}^{2} + p+q  { \omega}^{} }  \: }

 =  \displaystyle \sf{   \frac{ { \omega}^{2} (p + q \omega + r { \omega}^{2}) }{ (p + q \omega + r { \omega}^{2}) }  \: }

 =  \sf{ { \omega}^{2}  \: }

Hence proved

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

The length of the latus rectum of the parabola

13[(x-3)^2+(y-4)^2 )= (2x-3y+ 5)^2 is

https://brainly.in/question/24980361

Answered by MERCTROOPER
1

Step-by-step explanation:

Ohm's Law is a formula used to calculate the relationship between voltage, current and resistance in an electrical circuit. To students of electronics, Ohm's Law (E = IR) is as fundamentally important as Einstein's Relativity equation (E = mc²) is to physicists. E = I x R.

Similar questions