p represents the variable complex number z ,find the locus of p , if arg [z-1/z+3] =
Answers
Answered by
0
Step-by-step explanation:
Given, arg[
z+1
z−1
]=
3
π
Let z=x+iy
⇒arg[
x+iy+1
x+iy−1
]=
3
π
⇒arg[(x−1)+iy]−arg[(x+1)+iy]=
3
π
⇒tan
−1
[
(x−1)
y
]−tan
−1
[
x+1
y
]=
3
π
⇒tan
−1
⎣
⎢
⎢
⎡
1+
x−1
y
×
x+1
y
x−1
y
−
x+1
y
⎦
⎥
⎥
⎤
=
3
π
⇒
(x−1)(x+1)+y
2
y(x+1)−y(x−1)
=tan
3
π
=
3
⇒
x
2
−1+y
2
y[x+1−x+1]
=
3
⇒
x
2
+y
2
−1
2y
=
3
⇒2y=
3
x
2
+
3
y
2
−
3
Therefore, the locus of P is
3
x
2
+
3
y
2
−2y−
3
=0.
This is an equation of a circle.
Similar questions