Math, asked by vandanahursale01, 11 months ago

P
S. If point (x, y) is equidistant from the points (a + b, b - a) and
(a - b, a+b) then prove bx = ay.
(HOTS)​

Answers

Answered by snigdhabhamidipati20
1

Answer:

Step-by-step explanation:

Let P(x,y) A(a+b,b-a) B(a-b,a+b)

According to question PA=PB [Since they are equidistant]

Using distance formula

PA=\sqrt{  (x_{2}-x_{1})^{2}+(y_{2} -y_{1})^{2}

=√[(a+b)-x]∧2+[(b-a)-y]∧2

=√[(a^+b)^{2}+x^{2}-2(a+b)(x)]+[(b-a)^{2}+y^{2}-2(b-a)(y)

=\sqrt{ a^{2}+ b^{2}+2ab+x^{2} -2ax-2bx+b^{2}+a^{2}-2ba+y^{2}-2by+2ay

=\sqrt{2a^{2}+2b^{2}+x^{2}-2ax-2bx+y^{2}-2by+2ay    }-----------Eq.1

PB=\sqrt{ [ (a-b)-x)^{2}+[(a+b)-y]^{2}

=\sqrt{ [(a-b)^{2}+x^{2}-2(a-b)(x)]+[(a+b)^{2}+y^{2}-2(a+b)(y)]

=\sqrt{ a^{2}+b^{2}-2ab+x^{2}-2ax+2bx+a^{2}+b^{2}+2ab+y^{2}-2ay-2by

=\sqrt{ 2a^{2}+2b^{2}+x^{2}-2ax+2bx+y^{2}-2ay-2by---------Eq.2

Equate-1 and 2

\sqrt{2a^2+2b^2+x^2-2ax-2bx+y^2-2by+2ay=\sqrt{2a^2+2b^2+x^2-2ax+2bx+y^2-2ay-2by

Simplifying it

2a^2+2b^2+x^2-2ax-2bx+y^2-2by+2ay=2a^2+2b^2+x^2-2ax+2bx+y^2-2ay-2by

-2bx+2ay=2bx-2ay\\-2bx-2bx=-2ay-2ay\\-4bx=-4ay\\4ay=4bx\\ay=bx\\bx=ay\\

Hence proved........

Similar questions