p.sin3a+q.cosa=sina.cosa ,p.sina-q.cosa ,so proof that P2+q2=1
Answers
Answered by
3
Answer:
We have:
tanA+sinA=p=>(tanA+sinA)2=p2=>
p2=tan2A+sin2A+2tanAsinA…(1)
Now, if tanA−sinA=q , then we take:
tanA−sinA=q=>(tanA−sinA)2=q2=>
q2=tan2A+sin2A−2tanAsinA…(2)
By (1) , (2) , it follows that:
p2−q2=4(tanA)(sinA)…(3)
Now, we are also given that:
p2−q2=4pq−−√=>p2−q2=4sqrttan2A−sin2A=>
p2−q2=4(sin2A/cos2A)−sin2A−−−−−−−−−−−−−−−−−−−√=>
p2−q2=4[sin2A−(cos2A)sin2A]/cos2A−−−−−−−−−−−−−−−−−−−−−−−−√=>
p2−q2=4[sin2A(1−cos2A)]/cos2A−−−−−−−−−−−−−−−−−−−−−√=>
p2−q2=4[sin2A(sin2A)]/cos2A−−−−−−−−−−−−−−−−−−√=>
p2−q2=4[(sin2A)/cosA]=>p2−q2=4(tanA)(sinA)…(4)
By (3) and (4) , we conclude that if tanA+sinA=p and tanA−sinA=q , then:
p2−q2=4pq−−√
hope it's help you with ✌️
Similar questions