Math, asked by manaswi064, 11 months ago

p sinx + q cosy = tanz through lagranges method​

Answers

Answered by Swarup1998
0

Lagrange's Solution of a Linear Partial Differential Equation

Solution.

Given,

\quad \mathrm{p\:sinx+q\:cosy=tanz}

Lagrange's Auxiliary Equations are

\quad \mathrm{\frac{dx}{sinx}=\frac{dy}{cosy}=\frac{dz}{tanz}}

\Rightarrow \mathrm{cosecx\:dx=secy\:dy=cotz\:dz}

Taking the first two ratios, we get

\quad \mathrm{cosecx\:dx=secy\:dy}

\Rightarrow \mathrm{\int cosecx\:dx=\int secy\:dy}

\Rightarrow \mathrm{ln\left(tan\frac{x}{2}\right)=ln\left\{tan\left(\frac{\pi}{4}+\frac{x}{2}\right)\right\}+ln(C_{1})}

\Rightarrow \mathrm{tan\frac{x}{2}=tan\left(\frac{\pi}{4}+\frac{x}{2}\right)\:C_{1}}

\Rightarrow \color{blue}\mathrm{C_{1}=\frac{tan\frac{x}{2}}{tan\left(\frac{\pi}{4}+\frac{x}{2}\right)}}

Taking the last two ratios, we get

\quad \mathrm{secy\:dy=cotz\:dz}

\Rightarrow \mathrm{ln\left\{tan\left(\frac{\pi}{4}+\frac{x}{2}\right)\right\}=ln(sinx)+ln(C_{2})}

\Rightarrow \mathrm{tan\left(\frac{\pi}{4}+\frac{x}{2}\right)=sinx\:C_{2}}

\Rightarrow \color{blue}\mathrm{C_{2}=\frac{tan\left(\frac{\pi}{4}+\frac{x}{2}\right)}{sinx}}

\therefore the required general solution is

\quad\boxed{\color{blue}\mathrm{\phi\left(\frac{tan\frac{x}{2}}{tan\left(\frac{\pi}{4}+\frac{x}{2}\right)},\:\frac{tan\left(\frac{\pi}{4}+\frac{x}{2}\right)}{sinx}\right)=0}}

where \mathrm{\phi} is any arbitrary function of its arguments.

Similar questions