p.t (2a/2b)^a+b×(2b/2c)^b+c×(2c/2a)^c+a=1
Answers
Answered by
15
Hope the ques is
__________________________________________________________
Taking LHS
1 = RHS
_______________________________________________________
☺☺☺ Hope this Helps ☺☺☺
__________________________________________________________
Taking LHS
1 = RHS
_______________________________________________________
☺☺☺ Hope this Helps ☺☺☺
nitthesh7:
if u find it as most helpful pls mark it as brainliest
Answered by
1
Answer:
Answer and Explanation:
To prove : (\frac{2^a}{2^b})^{a+b}\times(\frac{2^b}{2^c})^{b+c}\times(\frac{2^c}{2^a})^{c+a}=1
Proof :
Taking LHS,
(\frac{2^a}{2^b})^{a+b}\times(\frac{2^b}{2^c})^{b+c}\times(\frac{2^c}{2^a})^{c+a}
Apply \frac{x^a}{x^b}=x^{a-b}
=(2^{a-b})^{a+b}\times(2^{b-c})^{b+c}\times(2^{c-a})^{c+a}
Apply (x^a)^b=x^{ab}
=2^{(a-b)(a+b)}\times2^{(b-c)(b+c)}\times2^{(c-a)(c+a)}
We know, (a-b)(a+b)=a^2-b^2
=2^{a^2-b^2}\times2^{b^2-c^2}\times2^{c^2-a^2}
Apply x^a\times x^b=x^{a+b}
=2^{a^2-b^2+b^2-c^2+c^2-a^2}
=2^{0}
=1
= RHS
Hence proved.
Step-by-step explanation:
Similar questions