P.T cos (A+B) - 2cosA + cos (A-B)/ sin (A+B) - 2sinA + sin(A-B) = cotA.
Answers
Answered by
2
Answer:
Step-by-step explanation:
cos (A+B) - 2cosA + cos (A-B)/ sin (A+B) - 2sinA + sin(A-B)
Let us solve Numerator and denominator separately for clarity purpose.
Numerator:
Cos (A+B) - 2CosA + Cos (A-B)
= CosACosB - SinASinB - 2CosA+ CosACosb + SinASinB
= 2 CosACosB - 2 CosA
= 2CosA(CosB - 1) -----------------> [1]
Denominator:
Sin (A+B) - 2SinA + Sin(A-B)
=SinACosB+ CosASinB - 2 SinA + SinACosB - CosASinB
= 2SinACosB - 2SinA
= 2SinA(CosB - 1) ----------------------- [2]
Now substitute the values back in the numerator and denominator i.e. [1] / [2]
=> 2CosA(CosB - 1) / 2SinA(CosB - 1)
=> CosA/SinA
= CotA.
= R.H.S
Hence proved.
Similar questions