Math, asked by Swastika53Lodh, 1 year ago

P.T:
[Cos x ÷(1-tan x)]+[sin x ÷(1-cot x)]= sin x+cos x

Answers

Answered by Sagar9696
1

 \frac{ \cos(x) }{1 -  \tan(x) }   +  \frac{ \sin(x ) }{1 -  \cot(x) }  \\  \frac{ \cos(x) }{1 -  \frac{ \sin(x) }{ \cos(x) } }  +  \frac{ \sin(x) }{1 -  \frac{ \cos(x) }{ \sin(x) } }  \\   \frac{ \cos(x) }{  \ \frac{ \cos(x)  - x \sin(x) }{ \cos(x) }  }  +   \frac{ \sin(x) }{ \frac{ \sin(x)  -  \cos(x) }{ \sin(x ) } }  \\  \frac{ \cos { }^{2} (x) }{ \cos(x) -  \sin(x)  }  +  \frac{ \sin {}^{2} ( { {x}^{} }^{} ) }{ \sin(x) -  \cos(x)  } \\  \ \ \frac{ \cos {}^{2} (x) }{ \cos(x)  -  \sin(x) }   -   \frac{ \sin {}^{2} (x) }{ \cos(x)  -  \sin(x) }  \\  \frac{ \ \cos  {}^{2} (x) -  \sin {}^{2} (x)  }{ \cos(x)  -  \sin(x) } \\  \frac{( \cos(x)  +  \sin(x)  )( \cos(x) -  \sin(x) ) }{ \cos(x) -  \sin(x)  }  \\  \ = cos(x)  +  \sin(x)



This is the solution
I think it will be helpful

Plzz select as brain list answer





Similar questions