p(x) = 27x³- 54x²+3x-4;g(x)=1-3/2x By remainder theorem, fi nd the remainder when, p(x) is divided by g(x)
Answers
Answered by
4
Hi ,
*****************************************
Remainder Theorem :
Let p(x) be any polynomial of degree
greater than or equal to one and let
' a ' be any real number.
If p(x) is divided by the linear
polynomial ( x - a ) , then the
remainder is p(a).
********************************************
Here ,
p(x) = 27x³-54x²+3x-4
If p(x) is divided by g(x) ,then
the remainder is p(2/3)
So ,replace x by 2/3 ,
p(2/3) = 27(2/3)³-54(2/3)²+3(2/3)-4
=27×(8/27)-54×(4/9)+2-4
= 8 - 24 + 2 - 4
= 10 - 28
= -18
Therefore ,
Required remainder = p(2/3)= -18
I hope this helps you.
: )
*****************************************
Remainder Theorem :
Let p(x) be any polynomial of degree
greater than or equal to one and let
' a ' be any real number.
If p(x) is divided by the linear
polynomial ( x - a ) , then the
remainder is p(a).
********************************************
Here ,
p(x) = 27x³-54x²+3x-4
If p(x) is divided by g(x) ,then
the remainder is p(2/3)
So ,replace x by 2/3 ,
p(2/3) = 27(2/3)³-54(2/3)²+3(2/3)-4
=27×(8/27)-54×(4/9)+2-4
= 8 - 24 + 2 - 4
= 10 - 28
= -18
Therefore ,
Required remainder = p(2/3)= -18
I hope this helps you.
: )
Answered by
1
Hi,
Answer: Remainder = -18
✴️Solution:
Given polynomial
p(x) = 27x³- 54x²+3x-4
g(x)=1-3/2x
✴️To find the remainder ,find the value of x from g(x) and put that value of x in p(x)
So,remainder is -18.
Hope it helps you
Answer: Remainder = -18
✴️Solution:
Given polynomial
p(x) = 27x³- 54x²+3x-4
g(x)=1-3/2x
✴️To find the remainder ,find the value of x from g(x) and put that value of x in p(x)
So,remainder is -18.
Hope it helps you
Similar questions
Computer Science,
7 months ago
Math,
1 year ago
Science,
1 year ago
English,
1 year ago
Social Sciences,
1 year ago