p(x) = 2x^2 + kx + √2
Answers
Answered by
6
Solution: (i) p(x) = x2 + x + k
Apply remainder theorem
=>x - 1 =0
=> x = 1
According to remainder theorem p(1) = 0 we get
Plug x = 1 we get
=> k(1)2 + 1+ 1 =0
=>k +1 + 1 =0
=> k + 2 = 0
=> k = - 2
Answer value of k = -2
(ii) p(x) = 2x2 + kx + √2
Apply remainder theorem
=>x - 1 =0
=> x = 1
According to remainder theorem p(1) = 0 we get
Plug x = 1 we get
p(1) = 2(1)2 + k(1) + √2
p(1) =2 + k + √2
0 = 2 + √2 + k
-2 - √2 = k
- (2 + √2) = k
Answer is k = - (2 + √2)
(iii) p(x) = kx2 – √2x + 1
Apply remainder theorem
=>x - 1 =0
=> x = 1
According to remainder theorem p(1) = 0 we get
Plug x = 1 we get
p(1) = k(1)2 – √2(1)+ 1
P(1) = K - √2 + 1
0 = K - √2 + 1
√2 -1 = K
Answer k= √2 -1
Answered by
4
Answer:
your answer is in attachment mark me brainliest first
Attachments:
Similar questions