Math, asked by lathavishak09, 7 months ago

p(x)=2x^3+7x^2-24x-45 g(x)=x-3

Answers

Answered by Intelligentcat
63

Answer:

\Large{\boxed{\underline{\overline{\mathfrak{\star \: AnSwer :- \: \star}}}}}

Using factor theorem show that g(x) is a factor of p(x) when p(x)=2x³+7x²- 24x-45,gx=x-3

\huge\underline{\overline{\mid{\bold{\pink{ANSWER-}}\mid}}}

(x - 3) is a factor of 2x³ + 7x² - 24x - 45

\Large{\underline{\underline{\bf{SoLuTion:-}}}}

p \: (x) \:  = \:  2x³ \:  + \:  7x² \:  - 24x - \:  45  \\ </p><p></p><p>g \: (x)  \: = \:  (x - 3) \\ </p><p></p><p>→  \: (x - 3)  \: =  \: 0 \\ </p><p></p><p>→ \:  x  \: =  \: 3 \\ </p><p>

Putting the value of x

p \: (x) \:  =  \: 2x³  \: + \:  7x² \:  - 24x - \:  45 \\ </p><p></p><p>p \: (x) \:  = \:  2 (3)³  \: + \:  7(3)² \:  - 24*3 \:  -  \: 45 \\ </p><p></p><p>p \: (x)  \: = \:  2 \: × \: 27  \: + \:  7 \: × \: 9 \:  -  \: 72  \: - \:  45 \\ </p><p></p><p>p \: (x) \:  =  \: 54  \: + \:  63  \: - \:  117 \\ </p><p></p><p>p \: (x) \:  =  \: 117  \: - 117 \\ </p><p></p><p>p \: (x) \:  = \:  0 \\

\mathfrak{\huge{\blue{\underline{\underline{Hence }}}}}

(x - 3) is a of 2x³ + 7x² - 24x - 45

Note

◉ If f(x) is a polynomial of degree n ≥ 1 and ‘a’ is any real number, then

★ (x-a) is a factor of f(x), if f(a)=0

★ Its converse “ if (x-a) is a factor of the polynomial f(x), then f(a)=0”

Answered by gadilihasini
3

Answer:

p(x)=0

hope this helps u

Attachments:
Similar questions