Math, asked by monalisachakrab7657, 11 months ago

P(x) =2x square-4x+5 If alpha and bita are zeros of p(x) find 1/alpha +1/bita

Answers

Answered by BrainlyConqueror0901
6

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{\frac{1}{\alpha}+\frac{1}{\beta}=\frac{4}{5}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given : }} \\  \tt:  \implies p(x) =  {2x}^{2}  - 4x + 5 \\  \\  \tt:  \implies  \alpha  \: and \:  \beta  \: are \: zeroes \\  \\ \red{\underline \bold{To \: Find: }} \\  \tt:  \implies  \frac{1}{ \alpha }  +  \frac{1}{ \beta }  = ?

• According to given question :

 \tt \circ \:  {2x}^{2} -4x + 5 = 0 \\  \\  \tt \circ \: a = 2 \:  \:  \:  \:  \:  \: b =  - 4 \:  \:  \:  \:  \:  \: c = 5  \\  \\  \bold{For \: sum \: of \: zeroes} \\  \tt: \implies  \alpha   + \beta =  -  \frac{b}{a}  \\  \\ \tt: \implies  \alpha  +  \beta  =  \frac{ - ( - 4)}{2}  \\  \\  \green{\tt: \implies \alpha  +  \beta  =  2} \\  \\  \bold{For \: product \: of \: zeroes} \\ \tt: \implies  \alpha  \beta  =  \frac{c}{a}  \\  \\  \green{\tt: \implies  \alpha  \beta  =  \frac{5}{4} } \\  \\  \bold{For \: finding \: value} \\ \tt: \implies  \frac{1}{\alpha }  +  \frac{1}{\beta }  \\  \\ \tt: \implies  \frac{ \alpha  +  \beta }{ \alpha  \beta }  \\  \\ \tt: \implies  \frac{2}{ \frac{5}{2}  }  \\  \\  \green{\tt: \implies  \frac{4}{5} } \\  \\   \green{\tt \therefore  \frac{1}{ \alpha }  +  \frac{1}{ \beta }  =  \frac{4}{5} }

Answered by ғɪɴɴвαłσℜ
5

Aɴꜱᴡᴇʀ

 \large{ \sf{ \green{ \frac{1}{ \alpha }  +  \frac{1}{ \beta }  =  \frac{4}{5} }}}

_________________

Gɪᴠᴇɴ

 \large \tt{} \alpha \: and \: \beta  \: are \: the \: 0s \: of \: p(x) =  2{x}^{2}  - 4x + 5

_________________

ᴛᴏ ꜰɪɴᴅ

 \large\tt{} value \: of \: \frac{1}{ \alpha } \: and \:  \frac{1}{ \beta }

_________________

Sᴛᴇᴘꜱ

First let's find their relationship between their coefficients,

Let's first compare it with the general form ax²+bx+c.

☞ a = 2

☞ b = (-4)

☞ c = 5

 \tt \leadsto{} \alpha  +  \beta  =  \large \frac{ - b}{a}  \\  \\ \tt{} \leadsto{} \alpha  +  \beta  =  \large  \cancel \frac{ - ( - 4)}{2}  \\   \\  \tt{} \hookrightarrow \red{ \alpha  +  \beta  =   2}

 \tt \mapsto \alpha  \beta  =  \large{} \frac{c}{a}  \\  \\  \tt \mapsto { \orange{\alpha  \beta  =  \large \frac{ 5}{2} }}

 \rm{} {}so \: now \:   \large\frac{1}{ \alpha }  +  \frac{1}{ \beta }  \: is \: equal \: to \\  \\  \tt{} \dashrightarrow{} \frac{ \alpha  +  \beta }{ \alpha  \beta }  \\  \\ \tt \dashrightarrow{}  \large \frac{  2}{ \frac{5}{2}}  \\  \\  \tt \dashrightarrow{}  \large 2 \times  \frac{2}{5}  \\  \\  \tt  \pink { \dashrightarrow{ \large{} \frac{4}{5} }}

________________________________

Similar questions