Math, asked by AaditeeRajSingh, 1 year ago

p(x)=ax^2 + bx + c. if a+b+c=0,then find one of its zero

Answers

Answered by Anonymous
3

a+b+c=0⟹c=−a−b

a+b+c=0⟹c=−a−b ax2+bx+c=0

a+b+c=0⟹c=−a−b ax2+bx+c=0 ax2+bx−a−b

a+b+c=0⟹c=−a−b ax2+bx+c=0 ax2+bx−a−b (ax2−a)+(bx−b)=0

a+b+c=0⟹c=−a−b ax2+bx+c=0 ax2+bx−a−b (ax2−a)+(bx−b)=0 a(x2−1)+b(x−1)=0

a+b+c=0⟹c=−a−b ax2+bx+c=0 ax2+bx−a−b (ax2−a)+(bx−b)=0 a(x2−1)+b(x−1)=0 a(x−1)(x+1)+b(x−1)=0

a+b+c=0⟹c=−a−b ax2+bx+c=0 ax2+bx−a−b (ax2−a)+(bx−b)=0 a(x2−1)+b(x−1)=0 a(x−1)(x+1)+b(x−1)=0 (x−1)(a(x+1)+b)=0

a+b+c=0⟹c=−a−b ax2+bx+c=0 ax2+bx−a−b (ax2−a)+(bx−b)=0 a(x2−1)+b(x−1)=0 a(x−1)(x+1)+b(x−1)=0 (x−1)(a(x+1)+b)=0 (x−1)(ax+a+b)=0

a+b+c=0⟹c=−a−b ax2+bx+c=0 ax2+bx−a−b (ax2−a)+(bx−b)=0 a(x2−1)+b(x−1)=0 a(x−1)(x+1)+b(x−1)=0 (x−1)(a(x+1)+b)=0 (x−1)(ax+a+b)=0 (x−1)(ax−c)=0

a+b+c=0⟹c=−a−b ax2+bx+c=0 ax2+bx−a−b (ax2−a)+(bx−b)=0 a(x2−1)+b(x−1)=0 a(x−1)(x+1)+b(x−1)=0 (x−1)(a(x+1)+b)=0 (x−1)(ax+a+b)=0 (x−1)(ax−c)=0 x=1;x=c/a

follow me dear for your future doubts ❤️

Similar questions