Math, asked by StrongGirl, 8 months ago

P(x) is polynomial of degree 3 which have maximum value 8 at x = 1, min 6 at x = 2 find P(0) ​

Answers

Answered by Anonymous
38

Given :

P(x) is polynomial of degree 3 which have maximum value 8 at x = 1, and min 6 at x = 2

To Find :

The value of p(0)

Solution :

Given : 2,1 are the critical points of p(x)

Thus,

\sf\:p(x)'=\lambda(x-1)(x-2)

Where ,λ is a constant

\sf\:p(x)'=\lambda(x^2-2x-x+2)

\sf\:p(x)'=\lambda(x^2-3x+2)

Now integrate

\sf\:p(x)=\lambda\int(x^2-3x+2)

\sf\:p(x)=\lambda(\frac{x^3}{3}-\frac{-3x^2}{2}+2x)+c

It is given that p(1)=8 then ,

\sf\:p(1)=\lambda(\frac{1^3}{3}-\frac{-3\times1^2}{2}+2)+c

\sf\:p(1)=\lambda(\frac{1}{3}-\frac{-3}{2}+2)+c

\sf\:p(1)=\lambda(\frac{14-9}{6})+c

\sf\:p(1)=\frac{5\lambda}{6}+c

\sf\:8=\frac{5\lambda}{6}+c....(1)

It is also given that p(2)=6 ,then

\sf\:p(2)=\lambda(\frac{2^3}{3}-\frac{-3\times2^2}{2}+2\times2)+c

\sf\:p(2)=\lambda(\frac{8}{3}-\frac{-3\times4}{2}+4)+c

\sf\:p(2)=\lambda(\frac{8-6}{3})+c

\sf\:p(2)=\frac{2\lambda}{3}+c

\sf\:6=\frac{2\lambda}{3}+c....(2)

Subtract Equation (2) from (1)

Then ,

\sf\:2=\dfrac{5\lambda}{6}-\dfrac{2\lambda}{3}

\sf\:2=\dfrac{(5-4)\lambda}{6}

\sf\:2=\dfrac{\lambda}{6}

\sf\lambda=12

Put ,λ=12 in equation (1)

\sf\:8=\dfrac{5}{6}\times12+c

\sf\:8=10+c

\sf\:c=-2

Thus,

\sf\:p(x)=12(\frac{x^3}{3}-\frac{-3x^2}{2}+2x)-12

We have to find p(0)

Then ,

\sf\:p(0)=12(\frac{0^3}{3}-\frac{-3\times0^2}{2}+2\times0)-2

\sf\:p(0)=-2

Therefore ,p(0)= -2

Answered by pulakmath007
59

\displaystyle\huge\red{\underline{\underline{Solution}}}

Since P(x) is a polynomial of degree 3

Let

P(x) = a {x}^{3}  + b {x}^{2} +  cx + d \:  \:  \:  \: ......(1)

Where a, b, c, d are constants

P'(x) = 3a {x}^{2}  + 2bx + c

Now by the given condition 1 :

O(x) has a maximum value 8 at x= 1

P(1) = 8

 \implies \: a + b + c + d = 8 \:  \:  \: ....(2)

And

P'(1) = 0

 \implies \: 3a + 2b + c = 0 \:  \:  \: ....(3)

Again by the given condition 2 :

P(x) has a minimum value 6 at x = 2

P(2) =6

 \implies \: 8a + 4b + 2c + d = 6 \:  \:...... (4)

And

P'(2) = 0

 \implies \: 12a + 4b + c = 0 \:  \:  \: ....(5)

Equation 4 - Equation 2 gives

7a + 3b + c =  - 2 \:  \:  \: ...(6)

Equation (5) - Equation 3 gives

9a + 2b = 0 \:  \: .......(7)

Equation 5 - Equation 6 gives

5a + b \:  = 2 \:  \:  \: ....(8)

Solving Equation 7 & Equation 8

a = 4 \:  \:  \: and \:  \: b =  - 18

From Equation 5

c  =  - 12a - 4b =  - 48 + 72 = 24

From Equation 2

d = 8 - 4 + 18 - 24 =  - 2

So

P(x) = 4 {x}^{3}   - 18 {x}^{2} +  24x  - 2 \:  \:  \:

So

P(0) = 0 - 0 + 0 - 2 = - 2

Similar questions
Math, 3 months ago