P(x) is polynomial of degree 3 which have maximum value 8 at x = 1, min 6 at x = 2 find P(0)
⠀
⠀
⠀
Answers
Answer:
Let the polynomial be P(x) = ax³ + bx² + cx + d
According to given conditions:-
P(1)=a+bc+d=10
P(1)=a+b+c+d=6
P(1)=3a2b+c=0
P(1)=6a+2b=0
3a + b = 0
Solving for a,b,c,d we get P(x) = x³ - 3x² - 9x + 5
Therefore,
- p(0) = 5
Hope it's Help you dear ❤
If Not It's Ok ☺
Answer:
hiiiiiiiiiiiiiiiiiiiiiiiiii
Step-by-step explanation:
Given :
P(x) is polynomial of degree 3 which have maximum value 8 at x = 1, and min 6 at x = 2
To Find :
The value of p(0)
Solution :
Given : 2,1 are the critical points of p(x)
Thus,
\sf\:p(x)'=\lambda(x-1)(x-2)p(x)
′
=λ(x−1)(x−2)
Where ,λ is a constant
\sf\:p(x)'=\lambda(x^2-2x-x+2)p(x)
′
=λ(x
2
−2x−x+2)
\sf\:p(x)'=\lambda(x^2-3x+2)p(x)
′
=λ(x
2
−3x+2)
Now integrate
\sf\:p(x)=\lambda\int(x^2-3x+2)p(x)=λ∫(x
2
−3x+2)
\sf\:p(x)=\lambda(\frac{x^3}{3}-\frac{-3x^2}{2}+2x)+cp(x)=λ(
3
x
3
−
2
−3x
2
+2x)+c
It is given that p(1)=8 then ,
\sf\:p(1)=\lambda(\frac{1^3}{3}-\frac{-3\times1^2}{2}+2)+cp(1)=λ(
3
1
3
−
2
−3×1
2
+2)+c
\sf\:p(1)=\lambda(\frac{1}{3}-\frac{-3}{2}+2)+cp(1)=λ(
3
1
−
2
−3
+2)+c
\sf\:p(1)=\lambda(\frac{14-9}{6})+cp(1)=λ(
6
14−9
)+c
\sf\:p(1)=\frac{5\lambda}{6}+cp(1)=
6
5λ
+c
\sf\:8=\frac{5\lambda}{6}+c....(1)8=
6
5λ
+c....(1)
It is also given that p(2)=6 ,then
\sf\:p(2)=\lambda(\frac{2^3}{3}-\frac{-3\times2^2}{2}+2\times2)+cp(2)=λ(
3
2
3
−
2
−3×2
2
+2×2)+c
\sf\:p(2)=\lambda(\frac{8}{3}-\frac{-3\times4}{2}+4)+cp(2)=λ(
3
8
−
2
−3×4
+4)+c
\sf\:p(2)=\lambda(\frac{8-6}{3})+cp(2)=λ(
3
8−6
)+c
\sf\:p(2)=\frac{2\lambda}{3}+cp(2)=
3
2λ
+c
\sf\:6=\frac{2\lambda}{3}+c....(2)6=
3
2λ
+c....(2)
Subtract Equation (2) from (1)
Then ,
\sf\:2=\dfrac{5\lambda}{6}-\dfrac{2\lambda}{3}2=
6
5λ
−
3
2λ
\sf\:2=\dfrac{(5-4)\lambda}{6}2=
6
(5−4)λ
\sf\:2=\dfrac{\lambda}{6}2=
6
λ
\sf\lambda=12λ=12
Put ,λ=12 in equation (1)
\sf\:8=\dfrac{5}{6}\times12+c8=
6
5
×12+c
\sf\:8=10+c8=10+c
\sf\:c=-2c=−2
Thus,
\sf\:p(x)=12(\frac{x^3}{3}-\frac{-3x^2}{2}+2x)-12p(x)=12(
3
x
3
−
2
−3x
2
+2x)−12
We have to find p(0)
Then ,
\sf\:p(0)=12(\frac{0^3}{3}-\frac{-3\times0^2}{2}+2\times0)-2p(0)=12(
3
0
3
−
2
−3×0
2
+2×0)−2
\sf\:p(0)=-2p(0)=−2
Therefore ,p(0)= -2