History, asked by hectopoma01, 1 year ago

p(x) is x³-5x²-2x+24

Answers

Answered by babushall
20

Explanation:

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  24. 

 The factor(s) are: 

of the Leading Coefficient :  1

 of the Trailing Constant :  1 ,2 ,3 ,4 ,6 ,8 ,12 ,24 

The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms 

In our case this means that 

   x3-5x2-2x+24 

can be divided by 3 different polynomials,including by  x-4 .

Factoring  x2-x-6 

The first term is,  x2  its coefficient is  1 .

The middle term is,  -x  its coefficient is  -1 .

The last term, "the constant", is  -6 

Step-1 : Multiply the coefficient of the first term by the constant   1 • -6 = -6 

Step-2 : Find two factors of  -6  whose sum equals the coefficient of the middle term, which is   -1 .

     -6   +   1   =   -5     -3   +   2   =   -1   That's it

Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -3  and  2 

                     x2 - 3x + 2x - 6

Step-4 : Add up the first 2 terms, pulling out like factors :

                    x • (x-3)

              Add up the last 2 terms, pulling out common factors :

                    2 • (x-3)

Step-5 : Add up the four terms of step 4 :

                    (x+2)  •  (x-3)

             Which is the desired factorization.

so, x³-5x²-2x+24 = (x-4)(x+2)(x-3)

x= 4 or x= -2 or x = 3.....

Attachments:
Answered by nilesh102
7

Answer:-

The polynomial

x³-5x²-2x+24

and compare with

ax³+bx²+cx+d

α+β+y= -b/a =5

αβy = -d/a = -24

12y= -24....(as given the product

of.two zeros

i.e. αβ=12

y= -2.

α+β+y=5

α+β-2=5

α+β =7. .................(1)

(α+β)²=7²

(α-β)²+4αβ=49

(α-β)²+4*12=49

(α-β)²+48= 49

(α-β)² =1

α-β = √1

α-β=1. ....................(2)

subtracting (2) From (1)

α+β-(α-β)=7-1

α+β-α+β=6

2β =6

β=3

putting the value of β in the (2) eq

α-3=1

α=4

α=4,β=3,y= -2

i hope it helps you.

Similar questions